Modification of single molecule fluorescence near metallic nanostructures

In recent years there has been a growing interest in the interactions of fluorophores with metallic nanostructures or nanoparticles. The spectra properties of fluorophores can be dramatically modified by near‐field interactions with the electron clouds present in metals. Near‐field interactions are those occurring within a wavelength distance of an excited fluorophore. These interactions modify the emission in ways not seen in ensemble fluorescence experiments. In this review we provide an insightful description of the photophysics of metal plasmons and near‐field interactions. Additionally, we summarize recent works on single‐molecule studies on metal‐fluorophore interactions and suggest how these effects will result in new classes of experimental procedures, novel probes, bioassays and devices.

[1]  E. Coronado,et al.  Plasmonic Nanoantennas: Angular Scattering Properties of Multipole Resonances in Noble Metal Nanorods , 2008 .

[2]  V. Giannini,et al.  Excitation and emission enhancement of single molecule fluorescence through multiple surface-plasmon resonances on metal trimer nanoantennas. , 2008, Optics letters.

[3]  T. Veres,et al.  Fabrication of large area nanoprism arrays and their application for surface enhanced Raman spectroscopy , 2008, Nanotechnology.

[4]  J. Lakowicz,et al.  Single-cell fluorescence imaging using metal plasmon-coupled probe 2: single-molecule counting on lifetime image. , 2008, Nano letters.

[5]  Hervé Rigneault,et al.  Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures. , 2008, Optics express.

[6]  T. Ebbesen,et al.  Nanoaperture-enhanced fluorescence : Towards higher detection rates with plasmonic metals , 2008 .

[7]  G. Schatz Editorial for January 2008 , 2008 .

[8]  Sebastian Mackowski,et al.  Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes. , 2008, Nano letters.

[9]  Lukas Novotny,et al.  Spectral dependence of single molecule fluorescence enhancement. , 2007, Optics express.

[10]  M. A. Hamon,et al.  Reacting soluble single-walled carbon nanotubes with singlet oxygen , 2007 .

[11]  Jian Zhang,et al.  Suppressed Blinking in Single Quantum Dots (QDs) Immobilized Near Silver Island Films (SIFs). , 2007, Chemical physics letters.

[12]  Jian Zhang,et al.  Plasmonic Enhancement of Single-Molecule Fluorescence Near a Silver Nanoparticle , 2007, Journal of Fluorescence.

[13]  Zygmunt Gryczynski,et al.  Fluorescence amplification by electrochemically deposited silver nanowires with fractal architecture. , 2007, Journal of the American Chemical Society.

[14]  Jian Zhang,et al.  Enhanced Förster Resonance Energy Transfer on Single Metal Particle. 2. Dependence on Donor-Acceptor Separation Distance, Particle Size, and Distance from Metal Surface. , 2007, The journal of physical chemistry. C, Nanomaterials and interfaces.

[15]  Younan Xia,et al.  Synthesis of silver nanostructures with controlled shapes and properties. , 2007, Accounts of chemical research.

[16]  S. Dong,et al.  Electrochemical Preparation of Silver Nanostructure on the Planar Surface for Application in Metal-Enhanced Fluorescence , 2007 .

[17]  E. Goldys,et al.  Plasmon-enhanced fluorescence near metallic nanostructures: biochemical applications , 2007 .

[18]  J. Lakowicz,et al.  Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles. , 2007, Nano letters.

[19]  Vahid Sandoghdar,et al.  Design of plasmonic nanoantennae for enhancing spontaneous emission. , 2007, Optics letters.

[20]  Jian Zhang,et al.  Single cell fluorescence imaging using metal plasmon-coupled probe. , 2007, Bioconjugate chemistry.

[21]  R. Silbey,et al.  Molecular Fluorescence and Energy Transfer Near Interfaces , 2007 .

[22]  Younan Xia,et al.  Synthesis and optical properties of silver nanobars and nanorice. , 2007, Nano letters.

[23]  Lukas Novotny,et al.  Nanoplasmonic enhancement of single-molecule fluorescence , 2007 .

[24]  Glenn P. Goodrich,et al.  Plasmonic enhancement of molecular fluorescence. , 2007, Nano letters.

[25]  J. Lakowicz,et al.  Enhanced Förster Resonance Energy Transfer (FRET) on Single Metal Particle. , 2007, The journal of physical chemistry. C, Nanomaterials and interfaces.

[26]  Abraham D Stroock,et al.  Shape selectivity in the assembly of lithographically designed colloidal particles. , 2007, Journal of the American Chemical Society.

[27]  G. Schatz New Journals for a New Year , 2007 .

[28]  Haw Yang,et al.  Rapid and Quantitative Sizing of Nanoparticles Using Three-Dimensional Single-Particle Tracking , 2007 .

[29]  Jian Zhang,et al.  Single-Molecule Studies on Fluorescently Labeled Silver Particles: Effects of Particle Size. , 2007, The journal of physical chemistry. C, Nanomaterials and interfaces.

[30]  T. Ebbesen,et al.  Dual-color fluorescence cross-correlation spectroscopy in a single nanoaperture : towards rapid multicomponent screening at high concentrations. , 2006, Optics express.

[31]  Brian M. Cullum,et al.  Multilayer Enhanced Gold Film over Nanostructure Surface-Enhanced Raman Substrates , 2006, Applied spectroscopy.

[32]  Yi Fu,et al.  Enhanced fluorescence of Cy5-labeled oligonucleotides near silver island films: a distance effect study using single molecule spectroscopy. , 2006, The journal of physical chemistry. B.

[33]  L. Manna,et al.  Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control , 2006, Nature nanotechnology.

[34]  Yi Fu,et al.  Enhanced fluorescence of Cy5-labeled DNA tethered to silver island films: fluorescence images and time-resolved studies using single-molecule spectroscopy. , 2006, Analytical chemistry.

[35]  A. Scherer,et al.  Surface plasmon enhanced light emission from CdSe quantum dot nanocrystals , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[36]  J. Lakowicz,et al.  Metal-enhanced fluorescence from CdTe nanocrystals: a single-molecule fluorescence study. , 2006, Journal of the American Chemical Society.

[37]  V. Sandoghdar,et al.  Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.

[38]  C. Geddes Plasmonics—A Vision for the Future , 2006 .

[39]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[40]  P. Jain,et al.  Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. , 2006, The journal of physical chemistry. B.

[41]  J. Lakowicz Plasmonics in Biology and Plasmon-Controlled Fluorescence , 2006, Plasmonics.

[42]  Shimon Weiss,et al.  Advances in fluorescence imaging with quantum dot bio-probes. , 2006, Biomaterials.

[43]  O. Martin,et al.  Confining the sampling volume for Fluorescence Correlation Spectroscopy using a sub-wavelength sized aperture. , 2006, Optics express.

[44]  Rainer Erdmann,et al.  Spectral identification of specific photophysics of cy5 by means of ensemble and single molecule measurements. , 2006, The journal of physical chemistry. A.

[45]  Toby D M Bell,et al.  Characterizing the fluorescence intermittency and photobleaching kinetics of dye molecules immobilized on a glass surface. , 2006, The journal of physical chemistry. A.

[46]  Steven Miller Portable device for live tissue imaging. , 2006, Analytical chemistry.

[47]  R. Álvarez-Puebla,et al.  Surface-enhanced Raman scattering on colloidal nanostructures. , 2005, Advances in colloid and interface science.

[48]  M. L. Rodriguez-Mendez,et al.  Sensors based on double-decker rare earth phthalocyanines. , 2005, Advances in colloid and interface science.

[49]  Hervé Rigneault,et al.  Enhancement of single-molecule fluorescence detection in subwavelength apertures. , 2005, Physical review letters.

[50]  W. Knoll,et al.  Memory in quantum-dot photoluminescence blinking , 2005 .

[51]  Tolga Atay,et al.  Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons. , 2005, Nano letters.

[52]  K. Wood Analytical biotechnology: Imaging: beyond cataloging nucleic acids and proteins , 2005 .

[53]  Ignacy Gryczynski,et al.  Metal-enhanced fluorescence: an emerging tool in biotechnology. , 2005, Current opinion in biotechnology.

[54]  K. Vasilev,et al.  Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film. , 2005, Physical review letters.

[55]  Ignacy Gryczynski,et al.  Fluorescence enhancement of fluorophores tethered to different sized silver colloids deposited on glass substrate , 2005, Biopolymers.

[56]  D. Guzatov,et al.  RADIATIVE DECAY ENGINEERING BY TRIAXIAL NANOELLIPSOIDS , 2004, quant-ph/0409089.

[57]  Joel I. Gersten,et al.  Theory of Fluorophore-Metallic Surface Interactions , 2005 .

[58]  George C Schatz,et al.  Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays. , 2004, The Journal of chemical physics.

[59]  Albert Libchaber,et al.  Single-molecule measurements of gold-quenched quantum dots. , 2004, Physical review letters.

[60]  M. Ishikawa,et al.  Trigonal silver nanostructure for single molecule detection with surface enhanced Raman scattering , 2004 .

[61]  Alejandro Strachan,et al.  Normal modes and frequencies from covariances in molecular dynamics or Monte Carlo simulations. , 2004, The Journal of chemical physics.

[62]  G. Schatz,et al.  Electromagnetic fields around silver nanoparticles and dimers. , 2004, The Journal of chemical physics.

[63]  Steve Blair,et al.  Fluorescence enhancement from an array of subwavelength metal apertures. , 2003, Optics letters.

[64]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[65]  Igor Nabiev,et al.  Enhanced Luminescence of CdSe Quantum Dots on Gold Colloids , 2002 .

[66]  M. Bawendi,et al.  Surface-enhanced emission from single semiconductor nanocrystals. , 2002, Physical review letters.

[67]  A. Puri,et al.  Energy flow and fluorescence near a small metal particle , 2002 .

[68]  Jörg Enderlein,et al.  Theoretical study of single molecule fluorescence in a metallic nanocavity , 2002 .

[69]  J. Lakowicz Radiative decay engineering: biophysical and biomedical applications. , 2001, Analytical biochemistry.

[70]  George C. Schatz,et al.  Modeling Metal Nanoparticle Optical Properties , 2001 .

[71]  C. Haynes,et al.  Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics , 2001 .

[72]  C. Seidel,et al.  Homogeneity, transport and signal properties of single Ag particles studied by single-molecule surface-enhanced resonance Raman scattering. , 2001 .

[73]  J Enderlein,et al.  A theoretical investigation of single-molecule fluorescence detection on thin metallic layers. , 2000, Biophysical journal.

[74]  M El Sayed,et al.  SHAPE AND SIZE DEPENDENCE OF RADIATIVE, NON-RADIATIVE AND PHOTOTHERMAL PROPERTIES OF GOLD NANOCRYSTALS , 2000 .

[75]  Jörg Enderlein,et al.  Single-molecule fluorescence near a metal layer , 1999 .

[76]  R. V. Duyne,et al.  Nanosphere Lithography: Size-Tunable Silver Nanoparticle and Surface Cluster Arrays , 1999 .

[77]  J. Yguerabide,et al.  Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. , 1998, Analytical biochemistry.

[78]  J. Yguerabide,et al.  Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. , 1998, Analytical biochemistry.

[79]  K. Sokolov,et al.  Enhancement of molecular fluorescence near the surface of colloidal metal films. , 1998, Analytical chemistry.

[80]  Toshio Yanagida,et al.  Single molecule imaging of fluorescently labeled proteins on metal by surface plasmons in aqueous solution. , 1998 .

[81]  W. Göhde,et al.  FLUORESCENCE SPECTROSCOPY ON SINGLE CDS NANOCRYSTALS , 1997 .

[82]  K. Liou,et al.  Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space , 1996 .

[83]  Norris,et al.  Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states. , 1996, Physical review. B, Condensed matter.

[84]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[85]  G. W. Ford,et al.  Electromagnetic interactions of molecules with metal surfaces , 1984 .

[86]  P. Barber Absorption and scattering of light by small particles , 1984 .

[87]  Horia Metiu,et al.  Electrodynamics at metal surfaces. IV. The electric fields caused by the polarization of a metal surface by an oscillating dipole , 1982 .

[88]  G. W. Ford,et al.  Electromagnetic effects on a molecule at a metal surface , 1981 .

[89]  A. Nitzan,et al.  Spectroscopic properties of molecules interacting with small dielectric particles , 1981 .

[90]  B. Persson Theory of the damping of excited molecules located above a metal surface , 1978 .

[91]  K. Drexhage Influence of a dielectric interface on fluorescence decay time , 1970 .