Exact-Size Sampling of Enriched Trees in Linear Time

Various combinatorial classes such as outerplanar graphs and maps, series-parallel graphs, substitution-closed classes of permutations and many more allow bijective encodings by so-called enriched trees, which are rooted trees with additional structure on the offspring of each node. Using this universal description we develop sampling procedures that uniformly generate objects from this classes with a given size n in expected time O(n). The key ingredient is a representation of enriched trees in terms of decorated Bienaymé–Galton–Watson trees, which allows us to develop a novel combination of Devroye’s efficient sampler for trees [21] with Boltzmann sampling techniques. Additionally, we construct expected linear time samplers for critical Bienaymé–Galton–Watson trees having exactly n (out of ≥ n total) nodes with outdegree in some fixed set, enabling uniform generation for many combinatorial classes such as dissections of polygons.

[1]  Gilbert Labelle,et al.  Combinatorial species and tree-like structures , 1997, Encyclopedia of mathematics and its applications.

[2]  Mike D. Atkinson,et al.  Simple permutations and pattern restricted permutations , 2005, Discret. Math..

[3]  Konstantinos Panagiotou,et al.  Scaling Limits of Random Graphs from Subcritical Classes , 2014, 1411.1865.

[4]  Danièle Gardy,et al.  Asymptotics and random sampling for BCI and BCK lambda terms , 2013, Theor. Comput. Sci..

[5]  P. Flajolet,et al.  Boltzmann Sampling of Unlabelled Structures , 2006 .

[6]  Invariance principles for Galton-Watson trees conditioned on the number of leaves , 2011, 1110.2163.

[7]  Douglas Rizzolo Scaling limits of Markov branching trees and Galton-Watson trees conditioned on the number of vertices with out-degree in a given set , 2011, 1105.2528.

[8]  Manuel Bodirsky,et al.  Generating Outerplanar Graphs Uniformly at Random , 2006, Combinatorics, Probability and Computing.

[9]  M. Bouvel,et al.  A decorated tree approach to random permutations in substitution-closed classes , 2019, Electronic Journal of Probability.

[10]  Konstantinos Panagiotou,et al.  The Degree Sequence of Random Graphs from Subcritical Classes† , 2009, Combinatorics, Probability and Computing.

[11]  Mathilde Bouvel,et al.  An algorithm computing combinatorial specifications of permutation classes , 2015, Discret. Appl. Math..

[12]  Nicolas Curien,et al.  Random non‐crossing plane configurations: A conditioned Galton‐Watson tree approach , 2012, Random Struct. Algorithms.

[13]  Olivier Bodini,et al.  Random Sampling of Plane Partitions , 2006, Combinatorics, Probability and Computing.

[14]  Nachum Dershowitz,et al.  The Cycle Lemma and Some Applications , 1990, Eur. J. Comb..

[15]  Benedikt Stufler Limits of random tree-like discrete structures , 2016, Probability Surveys.

[16]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[17]  Konstantinos Panagiotou,et al.  Maximal biconnected subgraphs of random planar graphs , 2009, TALG.

[18]  Svante Janson,et al.  Simply generated trees, conditioned Galton–Watson trees, random allocations and condensation , 2011, 1112.0510.

[20]  Alain Denise,et al.  Uniform Random Generation of Decomposable Structures Using Floating-Point Arithmetic , 1999, Theor. Comput. Sci..

[21]  Benedikt Stufler A branching process approach to level‐k phylogenetic networks , 2021, Random Struct. Algorithms.

[22]  Michèle Soria,et al.  Boltzmann samplers for first-order differential specifications , 2012, Discret. Appl. Math..

[23]  Philippe Flajolet,et al.  A Calculus for the Random Generation of Labelled Combinatorial Structures , 1994, Theor. Comput. Sci..

[24]  Luc Devroye,et al.  Simulating Size-constrained Galton-Watson Trees , 2012, SIAM J. Comput..

[25]  Jérémie O. Lumbroso,et al.  Split-Decomposition Trees with Prime Nodes: Enumeration and Random Generation of Cactus Graphs , 2017, ANALCO.

[26]  Benedikt Stufler,et al.  Graphon convergence of random cographs , 2019, Random Struct. Algorithms.

[27]  Olivier Bodini,et al.  Polynomial tuning of multiparametric combinatorial samplers , 2017, ANALCO.

[28]  K. Panagiotou,et al.  Scaling limits of random Pólya trees , 2015, 1502.07180.

[29]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[30]  Andrea Sportiello Boltzmann sampling of irreducible context-free structures in linear time , 2021, ArXiv.

[31]  Frédérique Bassino,et al.  Universal limits of substitution-closed permutation classes , 2017, 1706.08333.

[32]  Steven Skiena,et al.  The Algorithm Design Manual , 2020, Texts in Computer Science.

[33]  Michael Drmota,et al.  Asymptotic Study of Subcritical Graph Classes , 2010, SIAM J. Discret. Math..

[34]  Marc Noy,et al.  Maximum degree in minor-closed classes of graphs , 2016, Eur. J. Comb..

[35]  Marc Noy,et al.  Extremal Parameters in Sub-Critical Graph Classes , 2013, ANALCO.

[36]  Michèle Soria,et al.  Algorithms for combinatorial structures: Well-founded systems and Newton iterations , 2011, J. Comb. Theory, Ser. A.

[37]  Éric Fusy,et al.  Uniform random sampling of planar graphs in linear time , 2007, Random Struct. Algorithms.

[38]  Alvin Brown,et al.  Computers and Calculators , 2005 .

[39]  Manuel Bodirsky,et al.  Boltzmann Samplers, Pólya Theory, and Cycle Pointing , 2010, SIAM J. Comput..

[40]  Richard Ehrenborg,et al.  Schröder Parenthesizations and Chordates , 1994, J. Comb. Theory, Ser. A.

[41]  Benedikt Stufler Random Enriched Trees with Applications to Random Graphs , 2018, Electron. J. Comb..

[42]  Guy Louchard,et al.  Boltzmann Samplers for the Random Generation of Combinatorial Structures , 2004, Combinatorics, Probability and Computing.

[43]  Mihyun Kang,et al.  A Complete Grammar for Decomposing a Family of Graphs into 3-Connected Components , 2008, Electron. J. Comb..

[44]  Benedikt Stufler Scaling limits of random outerplanar maps with independent link-weights , 2015 .

[45]  Nicolas Bonichon,et al.  Canonical Decomposition of Outerplanar Maps and Application to Enumeration, Coding, and Generation , 2003, WG.

[46]  Yann Ponty,et al.  Multi-dimensional Boltzmann Sampling of Languages , 2010, 1002.0046.