Stabilty Conditions for Some Multiqueue Distributed Systems: Buffered Random Access Systems
暂无分享,去创建一个
[1] A. W. Kemp,et al. Applied Probability and Queues , 1989 .
[2] Wojciech Szpankowski. Bounds for Queue Lengths in a Contention Packet Broadcast System , 1986, IEEE Trans. Commun..
[3] W. D. Ray. Stationary Stochastic Models , 1991 .
[4] Anthony Ephremides,et al. On the stability of interacting queues in a multiple-access system , 1988, IEEE Trans. Inf. Theory.
[5] W. Rosenkrantz. Ergodicity conditions for two-dimensional Markov chains on the positive quadrant , 1989 .
[6] R. M. Loynes,et al. The stability of a queue with non-independent inter-arrival and service times , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.
[7] John N. Tsitsiklis,et al. The performance of a precedence-based queuing discipline , 1986, JACM.
[8] David J. Aldous. Ultimate instability of exponential back-off protocol for acknowledgment-based transmission control of random access communication channels , 1987, IEEE Trans. Inf. Theory.
[9] François Baccelli,et al. On the stability condition of a precedence-based queueing discipline , 1989, Advances in Applied Probability.
[10] John Capetanakis,et al. Tree algorithms for packet broadcast channels , 1979, IEEE Trans. Inf. Theory.
[11] A. A. Borovkov. On the Ergodicity and Stability of the Sequence $w_{n + 1} = f(w_n ,\xi _n )$: Applications to Communication Networks , 1989 .
[12] Panayota Papantoni-Kazakos,et al. On the Relation Between the Finite and the Infinite Population Models for a Class of RAA's , 1987, IEEE Trans. Commun..
[13] J. Ben Atkinson,et al. An Introduction to Queueing Networks , 1988 .
[14] Wojciech Szpankowski,et al. Towards computable stability criteria for some multidimensional stochastic processes , 1989 .
[15] P. Franken,et al. Stationary Stochastic Models. , 1992 .
[16] Upendra Dave,et al. Applied Probability and Queues , 1987 .
[17] S. Meyn,et al. Stability of Markovian processes I: criteria for discrete-time Chains , 1992, Advances in Applied Probability.
[18] M. Miyazawa. The intensity conservation law for queues with randomly changed service rate , 1985, Journal of Applied Probability.
[19] Erol Gelenbe,et al. Stability and Optimal Control of the Packet Switching Broadcast Channel , 1977, JACM.
[20] Guy Pujolle,et al. Introduction to queueing networks , 1987 .
[21] Venkat Anantharam. The stability region of the finite-user slotted ALOHA protocol , 1991, IEEE Trans. Inf. Theory.
[22] A. Ephremides,et al. Ergodicity of M-dimensional random walks and random access systems , 1987, 26th IEEE Conference on Decision and Control.
[23] R. Tweedie. Criteria for classifying general Markov chains , 1976, Advances in Applied Probability.
[24] Peter March,et al. Stability of binary exponential backoff , 1988, JACM.
[25] Frank Kelly,et al. Stochastic Models of Computer Communication Systems , 1985 .
[26] Guy Fayolle,et al. On random walks arising in queueing systems: ergodicity and transience via quadratic forms as lyapounov functions — Part I , 1989, Queueing Syst. Theory Appl..
[27] Wojciech Szpankowski,et al. Stability of token passing rings , 1992, Queueing Syst. Theory Appl..
[28] Wojciech Szpankowski,et al. Stability Conditions for Multidimensional Queueing Systems with Computer Applications , 1988, Oper. Res..
[29] Wojciech Szpankowski,et al. On a Recurrence Equation Arising in the Analysis of Conflict Resolution Algorithms , 1987 .