Geometry of quantum states: dual connections and divergence functions
暂无分享,去创建一个
[1] J. Schwinger. THE GEOMETRY OF QUANTUM STATES. , 1960, Proceedings of the National Academy of Sciences of the United States of America.
[2] V. P. Belavkin,et al. C*-algebraic generalization of relative entropy and entropy , 1982 .
[3] L. Ballentine,et al. Probabilistic and Statistical Aspects of Quantum Theory , 1982 .
[4] Shun-ichi Amari,et al. Differential-geometrical methods in statistics , 1985 .
[5] 甘利 俊一. Differential geometry in statistical inference , 1987 .
[6] H. Hasegawa. α-Divergence of the non-commutative information geometry , 1993 .
[7] H. Hasegawa. EXPONENTIAL AND MIXTURE FAMILIES IN QUANTUM STATISTICS : dual structure and unbiased parameter estimation(Analysis of Operators on Gaussian Space and Quantum Probability Theory) , 1995 .
[8] H. Nagaoka. Differential Geometrical Aspects of Quantum State Estimation and Relative Entropy , 1995 .
[9] R. Bhatia. Matrix Analysis , 1996 .
[10] D. Petz,et al. Geometries of quantum states , 1996 .
[11] D. Petz. Monotone metrics on matrix spaces , 1996 .
[12] Osamu Hirota,et al. "Quantum Communication, Computing, and Measurement" , 2012 .
[13] D. Petz,et al. Non-Commutative Extension of Information Geometry II , 1997 .
[14] D. Petz. INFORMATION-GEOMETRY OF QUANTUM STATES , 1998 .
[15] N. Čencov. Statistical Decision Rules and Optimal Inference , 2000 .