Darboux covariant equations of von Neumann type and their generalizations

Lax pairs with operator valued coefficients, which are explicitly connected by means of an additional condition, are considered. This condition is proved to be covariant with respect to the Darboux transformation of a general form. Nonlinear equations arising from the compatibility condition of the Lax pairs in the matrix case include, in particular, Nahm equations, and Volterra, Bogoyavlenskii and Toda lattices. The examples of other one-, two- and multi-field lattice equations are also presented.

[1]  Vito Volterra,et al.  Leçons sur la théorie mathématique de la lutte pour la vie , 1931 .

[2]  M. Toda Vibration of a Chain with Nonlinear Interaction , 1967 .

[3]  A. Mishchenko Integral geodesics of A flow on Lie groups , 1970 .

[4]  H. Flaschka On the Toda Lattice. II Inverse-Scattering Solution , 1974 .

[5]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[6]  I. Gel'fand,et al.  Fractional powers of operators and Hamiltonian systems , 1976 .

[7]  S. Manakov,et al.  Note on the integration of Euler's equations of the dynamics of an n-dimensional rigid body , 1976 .

[8]  O. Bogoyavlensky On perturbations of the periodic Toda lattice , 1976 .

[9]  W. Nahm A simple formalism for the BPS monopole , 1980 .

[10]  Morikazu Toda,et al.  Theory Of Nonlinear Lattices , 1981 .

[11]  N. Hitchin On the construction of monopoles , 1983 .

[12]  B. Kupershmidt,et al.  Mathematics of dispersive water waves , 1985 .

[13]  A. Perelomov Integrable systems of classical mechanics and Lie algebras , 1989 .

[14]  O I Bogoyavlenskii,et al.  Algebraic constructions of integrable dynamical systems-extensions of the Volterra system , 1991 .

[15]  Yi Cheng Constraints of the Kadomtsev-Petviashvili hierarchy , 1992 .

[16]  V. Matveev,et al.  Darboux Transformations and Solitons , 1992 .

[17]  B. M. Fulk MATH , 1992 .

[18]  W. Strampp,et al.  Multicomponent integrable reductions in the Kadomtsev–Petviashvilli hierarchy , 1993 .

[19]  A. Belov,et al.  Lattice analogues of W-algebras and classical integrable equations , 1993 .

[20]  K. Marciniak,et al.  R-matrix approach to lattice integrable systems , 1994 .

[21]  Jan L. Cieśliński,et al.  An algebraic method to construct the Darboux matrix , 1995 .

[22]  A. Shabat,et al.  On a class of toda chains , 1997 .

[23]  Maciej Błaszak,et al.  Multi-Hamiltonian Theory of Dynamical Systems , 1998 .

[24]  Marek Czachor,et al.  Darboux-integrable nonlinear Liouville-von Neumann equation , 1998 .

[25]  Yongtang Wu,et al.  Application of the Hirota bilinear formalism to a new integrable differential-difference equation , 1998 .

[26]  Marek Czachor,et al.  Nonlinear von Neumann-type equations: Darboux invariance and spectra , 1999 .

[27]  V. Sokolov,et al.  Integrable ordinary differential equations on free associative algebras , 2000 .

[28]  N. V. Ustinov,et al.  Darboux integration of , 2000 .

[29]  Marek Czachor,et al.  Darboux-integrable equations with non-Abelian nonlinearities , 2000 .

[30]  H. Tam,et al.  Some new results on the Błaszak-Marciniak 3-field and 4-field lattices , 2000 .

[31]  J. Cieśliński The Darboux-Bäcklund transformation without using a matrix representation , 2000 .

[32]  A. Shabat,et al.  Lagrangian Chains and Canonical Bäcklund Transformations , 2001 .

[33]  D. Levi,et al.  Integrable Hierarchies of Nonlinear Di erence Di erence Equations and symmetries , 2001 .

[34]  J. Cieśliński,et al.  A compact form of the Darboux–Bäcklund transformation for some spectral problems in Clifford algebras , 2001 .

[35]  H. Tam,et al.  Application of bilinear method to integrable differential-difference equations , 2001, Glasgow Mathematical Journal.

[36]  A. K. Svinin A class of integrable lattices and KP hierarchy , 2001, nlin/0107054.

[37]  J. Cieśliński How to Construct Darboux-Invariant Equations of Von Neumann Type , 2002 .