Darboux covariant equations of von Neumann type and their generalizations
暂无分享,去创建一个
[1] Vito Volterra,et al. Leçons sur la théorie mathématique de la lutte pour la vie , 1931 .
[2] M. Toda. Vibration of a Chain with Nonlinear Interaction , 1967 .
[3] A. Mishchenko. Integral geodesics of A flow on Lie groups , 1970 .
[4] H. Flaschka. On the Toda Lattice. II Inverse-Scattering Solution , 1974 .
[5] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[6] I. Gel'fand,et al. Fractional powers of operators and Hamiltonian systems , 1976 .
[7] S. Manakov,et al. Note on the integration of Euler's equations of the dynamics of an n-dimensional rigid body , 1976 .
[8] O. Bogoyavlensky. On perturbations of the periodic Toda lattice , 1976 .
[9] W. Nahm. A simple formalism for the BPS monopole , 1980 .
[10] Morikazu Toda,et al. Theory Of Nonlinear Lattices , 1981 .
[11] N. Hitchin. On the construction of monopoles , 1983 .
[12] B. Kupershmidt,et al. Mathematics of dispersive water waves , 1985 .
[13] A. Perelomov. Integrable systems of classical mechanics and Lie algebras , 1989 .
[14] O I Bogoyavlenskii,et al. Algebraic constructions of integrable dynamical systems-extensions of the Volterra system , 1991 .
[15] Yi Cheng. Constraints of the Kadomtsev-Petviashvili hierarchy , 1992 .
[16] V. Matveev,et al. Darboux Transformations and Solitons , 1992 .
[17] B. M. Fulk. MATH , 1992 .
[18] W. Strampp,et al. Multicomponent integrable reductions in the Kadomtsev–Petviashvilli hierarchy , 1993 .
[19] A. Belov,et al. Lattice analogues of W-algebras and classical integrable equations , 1993 .
[20] K. Marciniak,et al. R-matrix approach to lattice integrable systems , 1994 .
[21] Jan L. Cieśliński,et al. An algebraic method to construct the Darboux matrix , 1995 .
[22] A. Shabat,et al. On a class of toda chains , 1997 .
[23] Maciej Błaszak,et al. Multi-Hamiltonian Theory of Dynamical Systems , 1998 .
[24] Marek Czachor,et al. Darboux-integrable nonlinear Liouville-von Neumann equation , 1998 .
[25] Yongtang Wu,et al. Application of the Hirota bilinear formalism to a new integrable differential-difference equation , 1998 .
[26] Marek Czachor,et al. Nonlinear von Neumann-type equations: Darboux invariance and spectra , 1999 .
[27] V. Sokolov,et al. Integrable ordinary differential equations on free associative algebras , 2000 .
[28] N. V. Ustinov,et al. Darboux integration of , 2000 .
[29] Marek Czachor,et al. Darboux-integrable equations with non-Abelian nonlinearities , 2000 .
[30] H. Tam,et al. Some new results on the Błaszak-Marciniak 3-field and 4-field lattices , 2000 .
[31] J. Cieśliński. The Darboux-Bäcklund transformation without using a matrix representation , 2000 .
[32] A. Shabat,et al. Lagrangian Chains and Canonical Bäcklund Transformations , 2001 .
[33] D. Levi,et al. Integrable Hierarchies of Nonlinear Di erence Di erence Equations and symmetries , 2001 .
[34] J. Cieśliński,et al. A compact form of the Darboux–Bäcklund transformation for some spectral problems in Clifford algebras , 2001 .
[35] H. Tam,et al. Application of bilinear method to integrable differential-difference equations , 2001, Glasgow Mathematical Journal.
[36] A. K. Svinin. A class of integrable lattices and KP hierarchy , 2001, nlin/0107054.
[37] J. Cieśliński. How to Construct Darboux-Invariant Equations of Von Neumann Type , 2002 .