AN EIGENVALUE SEARCH ALGORITHM FOR THE MODAL ANALYSIS OF A RESONATOR IN FREE SPACE

In this article we present an algorithm for the three-dimensional numerical simulation of the sound spectrum and the propagation of acoustic radiation inside and around long slender hollow objects. The fluid inside and close to the object is meshed by Lagrangian tetrahedral finite elements. To obtain results in the far field of the object, complex conjugated Astley-Leis infinite elements are used. To apply these infinite elements the finite element domain is meshed either in a spherical or an ellipsoidal shape. Advantages and disadvantages of both shapes regarding the form of the object are discussed in this article. The formulation leads to a quadratic eigenvalue problem with real, large and nonsymmetric matrices. An eigenvalue search algorithm is implemented to concentrate on the computation of the interior eigenmodes. This algorithm is based on a linearization of the quadratic problem in a state space formulation. The search algorithm uses a complex shift to efficiently extract the relevant eigenvalues only.

[1]  W. Koch Acoustic resonances and trapped modes in annular plate cascades , 2009, Journal of Fluid Mechanics.

[2]  Steffen Marburg,et al.  Normal modes in external acoustics. Part II: Eigenvalues and eigenvectors in 2D , 2006 .

[3]  J. Coron,et al.  An Acoustic Model for Automatic Control of a Slide Flute , 2010 .

[4]  S. Marburg,et al.  Computational acoustics of noise propagation in fluids : finite and boudary element methods , 2008 .

[5]  Neville H Fletcher,et al.  ACOUSTIC IMPEDANCE SPECTRA OF CLASSICAL AND MODERN FLUTES , 2001 .

[6]  van Rr René Hassel,et al.  Corrections for woodwind tone-hole calculations , 1998 .

[7]  Joe Wolfe,et al.  How do clarinet players adjust the resonances of their vocal tracts for different playing effects? , 2005, The Journal of the Acoustical Society of America.

[8]  W. Koch,et al.  On resonances in open systems , 2004, Journal of Fluid Mechanics.

[9]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[10]  Herbert A. Mang,et al.  A 3D BOUNDARY ELEMENT METHOD FOR DETERMINATION OF ACOUSTIC EIGENFREQUENCIES CONSIDERING ADMITTANCE BOUNDARY CONDITIONS , 1993 .

[11]  M. J. Lighthill,et al.  The eigenvalues of ∇2u + λu=0 when the boundary conditions are given on semi-infinite domains , 1953, Mathematical Proceedings of the Cambridge Philosophical Society.

[12]  Comparison of a finite element model with a multiple-scales solution for sound propagation in varying ducts with swirling flows , 2004 .

[13]  Steffen Marburg Normal modes in external acoustics. Part III: Sound power evaluation based on superposition of frequency-independent modes , 2006 .

[14]  R. J. Astley,et al.  Conditioning of infinite element schemes for wave problems , 2001 .

[15]  R. J. Astley,et al.  Mapped Wave Envelope Elements for Acoustical Radiation and Scattering , 1994 .

[16]  A. H. Benade On the Mathematical Theory of Woodwind Finger Holes , 1960 .

[17]  Steffen Marburg,et al.  A Unified Approach to Finite and Boundary Element Discretization in Linear Time–Harmonic Acoustics , 2008 .

[18]  P. Werner Zur Asymptotik der wellengleichung und der wärmeleitungsgleichung in zweidimensionalen außenräumen , 1985 .

[19]  B. Fabre,et al.  Scaling of Flute-Like Instruments: An Analysis from the Point Of View of the Hydrodynamic Instability of the Jet , 2010 .

[20]  David S. Burnett,et al.  An ellipsoidal acoustic infinite element , 1998 .

[21]  Stefan Hein,et al.  Acoustic resonances in a high-lift configuration , 2007, Journal of Fluid Mechanics.

[22]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[23]  Udo Meißner,et al.  Die Methode der finiten Elemente , 1989 .

[24]  L. Thompson A review of finite-element methods for time-harmonic acoustics , 2006 .

[25]  Fabien Treyssède,et al.  A mixed finite element method for acoustic wave propagation in moving fluids based on an Eulerian-Lagrangian description. , 2003, The Journal of the Acoustical Society of America.

[26]  Ana Barjau,et al.  TIME-DOMAIN SIMULATION OF ACOUSTICAL WAVEGUIDES WITH ARBITRARILY SPACED DISCONTINUITIES , 1999 .

[27]  Thomas J. R. Hughes,et al.  Recent developments in finite element methods for structural acoustics , 1996 .

[28]  F. Ihlenburg Finite Element Analysis of Acoustic Scattering , 1998 .

[29]  David S. Burnett,et al.  A three‐dimensional acoustic infinite element based on a prolate spheroidal multipole expansion , 1994 .

[30]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[31]  R. J. Astley,et al.  Three-dimensional wave-envelope elements of variable order for acoustic radiation and scattering. Part I. Formulation in the frequency domain , 1998 .

[32]  Dan Givoli,et al.  Recent advances in the DtN FE Method , 1999 .

[33]  O. von Estorff,et al.  Improved conditioning of infinite elements for exterior acoustics , 2003 .

[34]  R. Astley Infinite elements for wave problems: a review of current formulations and an assessment of accuracy , 2000 .

[35]  Dan Givoli,et al.  Computational Absorbing Boundaries , 2008 .

[36]  J. Wolfe,et al.  Acoustic impedance measurements-correction for probe geometry mismatch. , 2005, The Journal of the Acoustical Society of America.

[37]  R. J. Astley,et al.  Mapped spheroidal wave-envelope elements for unbounded wave problems , 1998 .

[38]  Daniel Dreyer,et al.  Efficient Infinite Elements based on Jacobi Polynomials , 2008 .

[39]  J. Keller,et al.  Exact non-reflecting boundary conditions , 1989 .

[40]  Karl Meerbergen,et al.  Locking and Restarting Quadratic Eigenvalue Solvers , 2000, SIAM J. Sci. Comput..