A Multiscale Theoretical Investigation of Electric Measurements in Living Bone

This paper presents a theoretical investigation of the multiphysical phenomena that govern cortical bone behaviour. Taking into account the piezoelectricity of the collagen–apatite matrix and the electrokinetics governing the interstitial fluid movement, we adopt a multiscale approach to derive a coupled poroelastic model of cortical tissue. Following how the phenomena propagate from the microscale to the tissue scale, we are able to determine the nature of macroscopically observed electric phenomena in bone.

[1]  J. Luft,et al.  A mechanochemical hypothesis for bone remodeling induced by mechanical stress , 2005, Calcified Tissue Research.

[2]  Márcio A. Murad,et al.  Electro-chemo-mechanical couplings in swelling clays derived by homogenization: electroviscous effects and Onsager’s relations , 2020, Poromechanics II.

[3]  J. Wolff Das Gesetz der Transformation der Knochen , 1893 .

[4]  C. Cepko,et al.  Electroporation and RNA interference in the rodent retina in vivo and in vitro , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Thibault Lemaire,et al.  Study of the influence of fibrous pericellular matrix in the cortical interstitial fluid movement with hydroelectrochemical effects. , 2008, Journal of biomechanical engineering.

[6]  Thibault Lemaire,et al.  Modelling of electro-osmosis in clayey materials including pH effects , 2007 .

[7]  S. Cowin Bone poroelasticity. , 1999, Journal of biomechanics.

[8]  Thibault Lemaire,et al.  Modèle multi-échelle du transport de fluide dans un milieu poreux chargé avec échanges cationiques : application aux tissus osseux , 2009 .

[9]  S. Cowin,et al.  Ultrastructure of the osteocyte process and its pericellular matrix. , 2004, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[10]  Sheldon Weinbaum,et al.  In situ measurement of solute transport in the bone lacunar‐canalicular system , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Sheldon Weinbaum,et al.  Mechanotransduction and strain amplification in osteocyte cell processes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[12]  G V Cochran,et al.  An improved design of electrodes for measurement of streaming potentials on wet bone in vitro and in vivo. , 1989, Journal of biomechanics.

[13]  A. J. Bur,et al.  Measurements of the dynamic piezoelectric properties of bone as a function of temperature and humidity. , 1976, Journal of biomechanics.

[14]  J. Anderson,et al.  Piezoelectric Properties of Dry and Wet Bone , 1970, Nature.

[15]  Salah Naili,et al.  Transverse isotropic poroelastic osteon model under cyclic loading , 2005 .

[16]  Theo H Smit,et al.  Strain-derived canalicular fluid flow regulates osteoclast activity in a remodelling osteon--a proposal. , 2003, Journal of biomechanics.

[17]  J. M. Crolet,et al.  Elaboration of assumptions for the fluid problem at microscopic scale in Sinupros, mathematical model of cortical bone , 2009, Math. Comput. Model..

[18]  Márcio A. Murad,et al.  Electro-chemo-mechanical couplings in swelling clays derived from a micro/macro-homogenization procedure , 2002 .

[19]  Gaffar Gailani,et al.  Hierarchical poroelasticity: movement of interstitial fluid between porosity levels in bones , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  Salah Naili,et al.  Modelling of the transport in electrically charged porous media including ionic exchanges , 2010 .

[21]  Marvin W. Johnson,et al.  Comparison of the electromechanical effects in wet and dry bone , 1980 .

[22]  Eiichi Fukada,et al.  On the Piezoelectric Effect of Bone , 1957 .

[23]  S. Cowin,et al.  A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. , 2001, Journal of biomechanics.

[24]  Gaffar Gailani,et al.  Ramp loading in Russian doll poroelasticity , 2011 .

[25]  Nowick As,et al.  Piezoelectric properties of bone as functions of moisture content , 1975 .

[26]  G W Hastings,et al.  Electrical effects in bone. , 1988, Journal of biomedical engineering.

[27]  R. J. Hunter Zeta potential in colloid science : principles and applications , 1981 .

[28]  Hilmi Demiray,et al.  Electromechanical properties and related models of bone tissues: A review , 1979 .

[29]  P Gizdulich,et al.  Statistical characterization of piezoelectric coefficient d23 in cow bone. , 1999, Journal of biomechanics.

[30]  M J Glimcher,et al.  Bone biology. II: Formation, form, modeling, remodeling, and regulation of cell function. , 1996, Instructional course lectures.

[31]  Thibault Lemaire,et al.  Interstitial fluid flow in the osteon with spatial gradients of mechanical properties: a finite element study , 2008, Biomechanics and modeling in mechanobiology.

[32]  Vu-Hieu Nguyen,et al.  Influence of interstitial bone microcracks on strain-induced fluid flow , 2011, Biomechanics and modeling in mechanobiology.

[33]  S. Cowin,et al.  A case for bone canaliculi as the anatomical site of strain generated potentials. , 1995, Journal of biomechanics.

[34]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[35]  Andrew C Ahn,et al.  Relevance of collagen piezoelectricity to "Wolff's Law": a critical review. , 2009, Medical engineering & physics.

[36]  GLORIA B. REINISH,et al.  Piezoelectric properties of bone as functions of moisture content , 1975, Nature.

[37]  T. A. Taton Nanotechnology: Boning up on biology , 2001, Nature.

[38]  Jean-Louis Auriault,et al.  Heterogeneous medium. Is an equivalent macroscopic description possible , 1991 .

[39]  J. Klein-Nulend,et al.  MECHANOTRANSDUCTION IN BONE : ROLE OF THE LACUNOCANALICULAR NETWORK , 1999 .

[40]  Vu-Hieu Nguyen,et al.  Poroelastic behaviour of cortical bone under harmonic axial loading: a finite element study at the osteonal scale. , 2010, Medical engineering & physics.

[41]  Salah Naili,et al.  Multiscale modelling of fluid flow in charged porous media including cationic exchanges: application to bone tissues , 2009 .

[42]  Thibault Lemaire,et al.  Multiscale analysis of the coupled effects governing the movement of interstitial fluid in cortical bone , 2006, Biomechanics and modeling in mechanobiology.

[43]  V Sansalone,et al.  What is the importance of multiphysical phenomena in bone remodelling signals expression? A multiscale perspective. , 2011, Journal of the mechanical behavior of biomedical materials.

[44]  W. Walsh,et al.  Streaming potential of intact wet bone. , 1990, Journal of biomechanics.

[45]  Richard H W Funk,et al.  Electromagnetic effects - From cell biology to medicine. , 2009, Progress in histochemistry and cytochemistry.

[46]  Józef Joachim Telega,et al.  Flow of electrolyte through porous piezoelectric medium: macroscopic equations , 2000 .

[47]  J. Buckwalter,et al.  Bone biology. I: Structure, blood supply, cells, matrix, and mineralization. , 1996, Instructional course lectures.

[48]  Pierre M. Adler,et al.  Taylor dispersion in porous media: analysis by multiple scale expansions , 1995 .

[49]  Marco Piccolino,et al.  Animal electricity and the birth of electrophysiology: the legacy of Luigi Galvani , 1998, Brain Research Bulletin.

[50]  R. J. Pawluk,et al.  Effects of Electric Currents on Bone In Vivo , 1964, Nature.

[51]  S Rakowski,et al.  Mechano-electrical properties of bone. , 1981, Biomaterials.

[52]  S. Pollack,et al.  Electromechanical potentials in cortical bone--II. Experimental analysis. , 1987, Journal of biomechanics.

[53]  M. Otter,et al.  Streaming potentials in chemically modified bone , 1988, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[54]  Béatrice Labat,et al.  Piezomaterials for bone regeneration design—homogenization approach ☆ , 2005 .

[55]  R. Martin,et al.  Is all cortical bone remodeling initiated by microdamage? , 2002, Bone.

[56]  Vu-Hieu Nguyen,et al.  Anisotropic Poroelastic Hollow Cylinders with Damaged Periphery under Harmonic Axial Loading: Relevance to Bone Remodelling , 2009 .

[57]  E H Burger,et al.  Differential stimulation of prostaglandin G/H synthase-2 in osteocytes and other osteogenic cells by pulsating fluid flow. , 2000, Biochemical and biophysical research communications.

[58]  M. Shelley Frankenstein, Or The Modern Prometheus , 2018, Primary Sources on Monsters.

[59]  Salah Naili,et al.  Multiphysical modelling of fluid transport through osteo-articular media. , 2010, Anais da Academia Brasileira de Ciencias.

[60]  Thibault Lemaire,et al.  Mécanotransduction du remodelage osseux : rôle des fissures à la périphérie des ostéons , 2008 .

[61]  S. Pollack,et al.  An anatomical model for streaming potentials in osteons. , 1984, Journal of biomechanics.

[62]  A. Grodzinsky,et al.  Electromechanical and physicochemical properties of connective tissue. , 1983, Critical reviews in biomedical engineering.

[63]  S. Pollack,et al.  Ion concentration effects on the zeta potential of bone , 1986, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.