A survey of plant and algal genomes and transcriptomes reveals new insights into the evolution and function of the cellulose synthase superfamily

[1]  Douglas G. Scofield,et al.  The Norway spruce genome sequence and conifer genome evolution , 2013, Nature.

[2]  J. Fangel,et al.  Cell wall evolution and diversity , 2012, Front. Plant Sci..

[3]  N. Carpita Progress in the biological synthesis of the plant cell wall: new ideas for improving biomass for bioenergy. , 2012, Current opinion in biotechnology.

[4]  R. Dixon,et al.  On-off switches for secondary cell wall biosynthesis. , 2012, Molecular plant.

[5]  Sophie Bernard,et al.  Golgi-Mediated Synthesis and Secretion of Matrix Polysaccharides of the Primary Cell Wall of Higher Plants , 2012, Front. Plant Sci..

[6]  J. Bohlmann,et al.  Slow but not low: genomic comparisons reveal slower evolutionary rate and higher dN/dS in conifers compared to angiosperms , 2012, BMC Evolutionary Biology.

[7]  C. Delwiche,et al.  Broad Phylogenomic Sampling and the Sister Lineage of Land Plants , 2012, PloS one.

[8]  David S Domozych,et al.  The Charophycean green algae as model systems to study plant cell walls and other evolutionary adaptations that gave rise to land plants , 2012, Plant signaling & behavior.

[9]  David M. Goodstein,et al.  Phytozome: a comparative platform for green plant genomics , 2011, Nucleic Acids Res..

[10]  Yanbin Yin,et al.  Evolution of Plant Nucleotide-Sugar Interconversion Enzymes , 2011, PloS one.

[11]  M. Auer,et al.  The cooperative activities of CSLD2, CSLD3, and CSLD5 are required for normal Arabidopsis development. , 2011, Molecular plant.

[12]  A. Bacic,et al.  The charophycean green algae provide insights into the early origins of plant cell walls. , 2011, The Plant journal : for cell and molecular biology.

[13]  Sean R. Eddy,et al.  Accelerated Profile HMM Searches , 2011, PLoS Comput. Biol..

[14]  H. Scheller,et al.  Mannan synthase activity in the CSLD family , 2011, Plant signaling & behavior.

[15]  B. Kloareg,et al.  Evolution and diversity of plant cell walls: from algae to flowering plants. , 2011, Annual review of plant biology.

[16]  Andrew J. Heidel,et al.  Origin of land plants: Do conjugating green algae hold the key? , 2011, BMC Evolutionary Biology.

[17]  Michael S. Barker,et al.  De novo characterization of the gametophyte transcriptome in bracken fern, Pteridium aquilinum , 2011, BMC Genomics.

[18]  P. Ulvskov Annual Plant Reviews: Plant Polysaccharides, Biosynthesis and Bioengineering , 2010 .

[19]  R. Zhong,et al.  Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis. , 2010, Trends in plant science.

[20]  T. Tonon,et al.  The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. , 2010, The New phytologist.

[21]  C. Delwiche,et al.  Uncovering the evolutionary origin of plant molecular processes: comparison of Coleochaete (Coleochaetales) and Spirogyra (Zygnematales) transcriptomes , 2010, BMC Plant Biology.

[22]  Monika S. Doblin,et al.  Plant cell walls: the skeleton of the plant world , 2010 .

[23]  W. Willats,et al.  How Have Plant Cell Walls Evolved?1 , 2010, Plant Physiology.

[24]  Z. Popper,et al.  Beyond the Green: Understanding the Evolutionary Puzzle of Plant and Algal Cell Walls1 , 2010, Plant Physiology.

[25]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[26]  R. Burton,et al.  (1,3;1,4)-beta-D-glucans in cell walls of the poaceae, lower plants, and fungi: a tale of two linkages. , 2009, Molecular plant.

[27]  Jinling Huang,et al.  The cellulose synthase superfamily in fully sequenced plants and algae , 2009, BMC Plant Biology.

[28]  Monika S. Doblin,et al.  A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-β-d-glucan synthesis in transgenic Arabidopsis , 2009, Proceedings of the National Academy of Sciences.

[29]  G. Fincher Exploring the evolution of (1,3;1,4)-beta-D-glucans in plant cell walls: comparative genomics can help! , 2009, Current opinion in plant biology.

[30]  G. Fincher,et al.  Revolutionary Times in Our Understanding of Cell Wall Biosynthesis and Remodeling in the Grasses1 , 2009, Plant Physiology.

[31]  S. Fry,et al.  Mixed-linkage (1-->3,1-->4)-beta-D-glucan is a major hemicellulose of Equisetum (horsetail) cell walls. , 2008, The New phytologist.

[32]  Z. Popper Evolution and diversity of green plant cell walls. , 2008, Current opinion in plant biology.

[33]  Monika S. Doblin,et al.  Mixed-linkage (1-->3),(1-->4)-beta-D-glucan is not unique to the Poales and is an abundant component of Equisetum arvense cell walls. , 2008, The Plant journal : for cell and molecular biology.

[34]  Markus Pauly,et al.  Cell-wall carbohydrates and their modification as a resource for biofuels. , 2008, The Plant journal : for cell and molecular biology.

[35]  N. Raikhel,et al.  A gene from the cellulose synthase-like C family encodes a β-1,4 glucan synthase , 2007, Proceedings of the National Academy of Sciences.

[36]  K. Keegstra,et al.  Biosynthesis of plant cell wall polysaccharides - a complex process. , 2006, Current opinion in plant biology.

[37]  A. Roberts,et al.  The cellulose synthase (CESA) gene superfamily of the moss Physcomitrella patens , 2006, Plant Molecular Biology.

[38]  Neil J. Shirley,et al.  Cellulose Synthase-Like CslF Genes Mediate the Synthesis of Cell Wall (1,3;1,4)-ß-d-Glucans , 2006, Science.

[39]  Antony Bacic,et al.  Plant cell wall biosynthesis: genetic, biochemical and functional genomics approaches to the identification of key genes. , 2006, Plant biotechnology journal.

[40]  Charlotte K. Williams,et al.  The Path Forward for Biofuels and Biomaterials , 2006, Science.

[41]  Carolyn J. Lawrence-Dill,et al.  Comparative Plant Genomics Resources at PlantGDB1 , 2005, Plant Physiology.

[42]  C. Wilkerson,et al.  Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[43]  K. Katoh,et al.  MAFFT version 5: improvement in accuracy of multiple sequence alignment , 2005, Nucleic acids research.

[44]  R. Malcolm Brown,et al.  The pivotal role of cyanobacteria in the evolution of cellulose synthases and cellulose synthase-like proteins , 2004 .

[45]  A. Kinney,et al.  Guar Seed ß-Mannan Synthase Is a Member of the Cellulose Synthase Super Gene Family , 2004, Science.

[46]  Samuel P Hazen,et al.  Cellulose Synthase-Like Genes of Rice1 , 2002, Plant Physiology.

[47]  R. Brown,et al.  Cellulose in cyanobacteria. Origin of vascular plant cellulose synthase? , 2001, Plant physiology.

[48]  T. Richmond,et al.  The cellulose synthase superfamily. , 2000, Plant physiology.

[49]  X. Huang,et al.  CAP3: A DNA sequence assembly program. , 1999, Genome research.

[50]  Deborah P. Delmer,et al.  CELLULOSE BIOSYNTHESIS: Exciting Times for A Difficult Field of Study. , 1999, Annual review of plant physiology and plant molecular biology.

[51]  W R Pearson,et al.  Comparison of DNA sequences with protein sequences. , 1997, Genomics.

[52]  D. Delmer,et al.  Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Peer Bork,et al.  Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation , 2007, Bioinform..

[54]  N. Raikhel,et al.  A gene from the cellulose synthase-like C family encodes a beta-1,4 glucan synthase. , 2007, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Zoë A Popper,et al.  Primary cell wall composition of bryophytes and charophytes. , 2003, Annals of botany.