Calculations of rovibrational energies and dipole transition intensities for polyatomic molecules using MULTIMODE.

We report rigorous calculations of rovibrational energies and dipole transition intensities for three molecules using a new version of the code MULTIMODE. The key features of this code which permit, for the first time, such calculations for moderately sized but otherwise general polyatomic molecules are briefly described. Calculations for the triatomic molecule BF(2) are done to validate the code. New calculations for H(2)CO and H(2)CS are reported; these make use of semiempirical potentials but ab initio dipole moment surfaces. The new dipole surface for H(2)CO is a full-dimensional fit to the dipole moment obtained with the coupled-cluster with single and double excitations and a perturbative treatment of triple excitations method with the augmented correlation consistent triple zeta basis set. Detailed comparisons are made with experimental results from a fit to relative data for H(2)CS and absolute intensities from the HITRAN database for H(2)CO.

[1]  Joel M. Bowman,et al.  Variational calculations of rovibrational energies of CH4 and isotopomers in full dimensionality using an ab initio potential , 1999 .

[2]  N. Handy,et al.  Calculations of the ro-vibrational absorption transition probabilities in triatomic molecules , 1988 .

[3]  Alistair P. Rendell,et al.  Analytic gradients for coupled-cluster energies that include noniterative connected triple excitations: Application to cis- and trans-HONO , 1991 .

[4]  S. Carter,et al.  MULTIMODE: A code to calculate rovibrational energies of polyatomic molecules , 2003 .

[5]  Jacques Crovisier,et al.  The composition of ices in comet C/1995 O1 (Hale-Bopp) from radio spectroscopy , 2004 .

[6]  Joel M. Bowman,et al.  Self‐consistent field energies and wavefunctions for coupled oscillators , 1978 .

[7]  Y. Beers,et al.  Millimeter wave spectrum of thioformaldehyde , 1972 .

[8]  J. Tennyson,et al.  DVR3D: for the fully pointwise calculation of ro-vibrational spectra of triatomic molecules , 1995 .

[9]  A. Tielens,et al.  Ice absorption features in the 5-8 μm region toward embedded protostars , 2001 .

[10]  H. Kato,et al.  The microwave spectrum of thioformaldehyde, CD2S, and CH2S: Average structure, dipole moments, and 33S quadrupole coupling , 1982 .

[11]  Holger S. P. Müller,et al.  The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists , 2005 .

[12]  J. Bowman,et al.  The calculated infrared spectrum of Cl- H2O using a full dimensional ab initio potential surface and dipole moment surface. , 2006, The Journal of chemical physics.

[13]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[14]  J. Bowman,et al.  Deuteration effects on the structure and infrared spectrum of CH5(+). , 2006, Journal of the American Chemical Society.

[15]  T. Carrington,et al.  Variational quantum approaches for computing vibrational energies of polyatomic molecules , 2008 .

[16]  Jonathan Tennyson,et al.  Ab initio rotation-vibration spectra of HCN and HNC. , 2002, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[17]  Donald G Truhlar,et al.  Calculation of converged rovibrational energies and partition function for methane using vibrational-rotational configuration interaction. , 2004, The Journal of chemical physics.

[18]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[19]  Handy,et al.  The Geometry and Force Field of Thioformaldehyde. , 1998, Journal of molecular spectroscopy.

[20]  H. Müller,et al.  High-Frequency Rotational Spectrum of Thioformaldehyde, H2CS, in the Ground Vibrational State , 2008 .

[21]  N. Handy,et al.  The Geometry of Formaldehyde , 1996 .

[22]  John D. Watts,et al.  Non-iterative fifth-order triple and quadruple excitation energy corrections in correlated methods , 1990 .

[23]  W. J. Lafferty,et al.  The First High-Resolution Analysis of the 10 [mu]m Absorption of Thioformaldehyde , 2007 .

[24]  D. Reuter,et al.  Frequency and intensity analysis of the ν3, ν4, and ν6 bands of formaldehyde , 1989 .

[25]  Alexander G. G. M. Tielens,et al.  Interstellar Ice: The Infrared Space Observatory Legacy , 2004 .

[26]  N. Handy,et al.  The selective population of the vibrational levels of thioformaldehyde , 2001 .

[27]  B. Braams,et al.  Potential energy surface and MULTIMODE vibrational analysis of C2H3+. , 2006, The Journal of chemical physics.

[28]  A. Perrin,et al.  Corrigendum to “New analysis of the ν2 band of formaldehyde (H212C16O): Line positions for the ν2, ν3, ν4 and ν6 interacting bands” [J. Mol. Spectrosc. 245 (2007) 141–144] , 2008 .

[29]  Joel M. Bowman,et al.  Investigations of self-consistent field, scf ci and virtual stateconfiguration interaction vibrational energies for a model three-mode system , 1982 .

[30]  Ralf Schneider,et al.  Ab initio modeling of molecular IR spectra of astrophysical interest: Application to CH4 , 2009 .

[31]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[32]  H. Kroto,et al.  Molecular rotation spectra , 1975 .

[33]  N. Fourikis,et al.  Detection of interstellar thioformaldehyde , 1973 .

[34]  Gustavo E. Scuseria,et al.  Analytic evaluation of energy gradients for the singles and doubles coupled cluster method including perturbative triple excitations: Theory and applications to FOOF and Cr2 , 1991 .

[35]  P. Bernath,et al.  Spectrum of hot water in the 2000-4750 cm 1 frequency range , 2006 .

[36]  H. Müller,et al.  Submillimeter, millimeter, and microwave spectral line catalog. , 1985, Applied optics.

[37]  Jonathan Tennyson,et al.  Calculated rotational and ro-vibrational transitions in the spectrum of H3+ , 1988 .

[38]  N. Handy,et al.  A variational method for the calculation of spin–rovibronic energy levels of any triatomic molecule in an electronic triplet state , 2005 .

[39]  Agnes Perrin,et al.  New analysis of the ν2 band of formaldehyde (H212C16O): Line positions for the ν2, ν3, ν4 and ν6 interacting bands , 2007 .

[40]  P. Taylor,et al.  AN ACCURATE AB-INITIO QUARTIC FORCE-FIELD FOR FORMALDEHYDE AND ITS ISOTOPOMERS , 1993 .

[41]  Tennyson,et al.  The Spectrum of Hot Water: Rotational Transitions and Difference Bands in the (020), (100), and (001) Vibrational States , 1997, Journal of molecular spectroscopy.

[42]  N. Handy,et al.  Infrared intensities from the Multimode code , 2003 .

[43]  Jonathan Tennyson,et al.  Benchmark calculations of first principles rotation and ro-vibrational line strengths , 1989 .

[44]  J. Watson Simplification of the molecular vibration-rotation hamiltonian , 2002 .

[45]  L. M. Woodney,et al.  Sulfur Chemistry at Millimeter Wavelengths in C/Hale-Bopp , 1997 .

[46]  Agnes Perrin,et al.  Absolute line intensities measurements and calculations for the 5.7 and 3.6 μm bands of formaldehyde , 2009 .

[47]  B. Braams,et al.  Full-dimensional ab initio potential energy surface and vibrational configuration interaction calculations for vinyl. , 2009, The Journal of chemical physics.

[48]  N. Handy,et al.  THE VIBRATIONS OF FORMALDEHYDE , 1995 .

[49]  Joel M. Bowman,et al.  Tests of MULTIMODE calculations of rovibrational energies of CH4 , 2006 .

[50]  N. Handy,et al.  Extensions and tests of “multimode”: a code to obtain accurate vibration/rotation energies of many-mode molecules , 1998 .

[51]  W. Olson,et al.  The infrared spectrum of thioformaldehyde , 1971 .

[52]  M. Gerin,et al.  Infrared detection of gas phase formaldehyde towards the high mass protostar W33A , 2006 .

[53]  A. Perrin,et al.  New analysis of the 2ν4, ν4+ν6, 2ν6, ν3+ν4, ν3+ν6, ν1, ν5, ν2+ν4, 2ν3, ν2+ν6 and ν2+ν3 bands of formaldehyde H212C16O: Line positions and intensities in the 3.5 μm spectral region , 2006 .

[54]  J. Bowman,et al.  Comparison of quantum, classical, and ring-polymer molecular dynamics infra-red spectra of Cl-(H2O) and H+(H2O)(2) , 2008 .

[55]  Eugene P. Wigner,et al.  On the Consequences of the Symmetry of the Nuclear Hamiltonian on the Spectroscopy of Nuclei , 1937 .

[56]  J. Barry McManus,et al.  Airborne measurements of HCHO and HCOOH during the New England Air Quality Study 2004 using a pulsed quantum cascade laser spectrometer , 2007 .

[57]  P. Bernath,et al.  Spectra of Atoms and Molecules , 1996 .

[58]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .