Vasopressin Modulates Medial Prefrontal Cortex–Amygdala Circuitry during Emotion Processing in Humans

The neuropeptide vasopressin is a modulator of mammalian social behavior and emotion, particularly fear, aggression, and anxiety. In humans, the neural circuitry underlying behavioral effects of vasopressin is unknown. Using a double-blind crossover administration of 40 IU of vasopressin or placebo and functional MRI during processing of facial emotions in healthy male volunteers, we show that vasopressin specifically reduces differential activation in the subgenual cingulate cortex. Structural equation modeling of a previously evaluated circuit between amygdala, subgenual cingulate, and supragenual cingulate revealed altered effective connectivity between subgenual and supragenual cingulate under vasopressin. Our data demonstrate an impact of vasopressin on activity and connectivity in the cortical component of a medial prefrontal cortex–amygdala circuit implicated in emotional regulation, providing the first data on the neural basis for the effects of vasopressin on social behavior in humans with potential therapeutic significance for mood and anxiety disorders.

[1]  L. Young,et al.  Sexual dimorphism in the vasopressin system: Lack of an altered behavioral phenotype in female V1a receptor knockout mice , 2005, Behavioural Brain Research.

[2]  Giuseppe Blasi,et al.  Neural mechanisms of genetic risk for impulsivity and violence in humans. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[3]  J. M. Ree,et al.  Effect of acute and chronic treatment with desglycinamide-[Arg8]vasopressin in young male and female volunteers , 1995, Peptides.

[4]  Jan Born,et al.  Sniffing neuropeptides: a transnasal approach to the human brain , 2002, Nature Neuroscience.

[5]  Young,et al.  Localization of Vasopressin (V1a) Receptor Binding and mRNA in the Rhesus Monkey Brain , 1999, Journal of neuroendocrinology.

[6]  G. Tsujimoto,et al.  Impaired social interaction and reduced anxiety-related behavior in vasopressin V1a receptor knockout mice , 2007, Behavioural Brain Research.

[7]  Leslie G. Ungerleider,et al.  Network analysis of cortical visual pathways mapped with PET , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  Geert J de Vries,et al.  Sex differences in vasopressin and oxytocin innervation of the brain. , 2008, Progress in brain research.

[9]  D. Weinberger,et al.  Neocortical modulation of the amygdala response to fearful stimuli , 2003, Biological Psychiatry.

[10]  M. Raggenbass Overview of cellular electrophysiological actions of vasopressin. , 2008, European journal of pharmacology.

[11]  C. Spielberger,et al.  Manual for the state-trait anxiety inventory (form Y) : "self-evaluation questionnaire" , 1983 .

[12]  R. Stoop,et al.  Opposite effects of oxytocin and vasopressin on the emotional expression of the fear response. , 2008, Progress in brain research.

[13]  Larry J Young,et al.  Profound Impairment in Social Recognition and Reduction in Anxiety-Like Behavior in Vasopressin V1a Receptor Knockout Mice , 2004, Neuropsychopharmacology.

[14]  H. Barbas,et al.  Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey , 2002, Neuroscience.

[15]  T. Paus Primate anterior cingulate cortex: Where motor control, drive and cognition interface , 2001, Nature Reviews Neuroscience.

[16]  K. Luan Phan,et al.  Functional Neuroimaging Studies of Human Emotions , 2004, CNS Spectrums.

[17]  Andrea B Protzner,et al.  Testing effective connectivity changes with structural equation modeling: What does a bad model tell us? , 2006, Human brain mapping.

[18]  Danielle S. Bassett,et al.  A validated network of effective amygdala connectivity , 2007, NeuroImage.

[19]  D. Paré,et al.  Stimulation of Medial Prefrontal Cortex Decreases the Responsiveness of Central Amygdala Output Neurons , 2003, The Journal of Neuroscience.

[20]  Andreas Meyer-Lindenberg,et al.  Catechol O-methyltransferase val158met genotype and neural mechanisms related to affective arousal and regulation. , 2006, Archives of general psychiatry.

[21]  D. Stein,et al.  Research in anxiety disorders: From the bench to the bedside , 2009, European Neuropsychopharmacology.

[22]  J. Ashburner,et al.  Nonlinear spatial normalization using basis functions , 1999, Human brain mapping.

[23]  Peter Kirsch,et al.  Oxytocin Modulates Neural Circuitry for Social Cognition and Fear in Humans , 2005, The Journal of Neuroscience.

[24]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[25]  Salomon Israel,et al.  Arginine Vasopressin and Oxytocin Modulate Human Social Behavior , 2009, Annals of the New York Academy of Sciences.

[26]  Paul J. Laurienti,et al.  An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets , 2003, NeuroImage.

[27]  Andreas Meyer-Lindenberg,et al.  MAOA and the neurogenetic architecture of human aggression , 2008, Trends in Neurosciences.

[28]  Michael Davis,et al.  The amygdala: vigilance and emotion , 2001, Molecular Psychiatry.

[29]  A. Meyer-Lindenberg,et al.  Genetic variants in AVPR1A linked to autism predict amygdala activation and personality traits in healthy humans , 2009, Molecular Psychiatry.

[30]  D. Paré,et al.  Prefrontal Control of the Amygdala , 2005, The Journal of Neuroscience.

[31]  Karl J. Friston,et al.  Topological FDR for neuroimaging , 2010, NeuroImage.

[32]  S. Orr,et al.  Sex-specific influences of vasopressin on human social communication , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[33]  S. Rauch,et al.  Neurobiology of emotion perception I: the neural basis of normal emotion perception , 2003, Biological Psychiatry.

[34]  C Loehlin John,et al.  Latent variable models: an introduction to factor, path, and structural analysis , 1986 .

[35]  Joseph E LeDoux,et al.  Extinction Learning in Humans Role of the Amygdala and vmPFC , 2004, Neuron.

[36]  C. Ferris,et al.  Orally active vasopressin V1a receptor antagonist, SRX251, selectively blocks aggressive behavior , 2006, Pharmacology Biochemistry and Behavior.

[37]  M. Bradley,et al.  Measuring emotion: the Self-Assessment Manikin and the Semantic Differential. , 1994, Journal of behavior therapy and experimental psychiatry.

[38]  C. Spielberger,et al.  Manual for the State-Trait Anxiety Inventory , 1970 .

[39]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[40]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[41]  W. Young,et al.  Vasopressin: Behavioral roles of an “original” neuropeptide , 2008, Progress in Neurobiology.

[42]  E. Ginns,et al.  Vasopressin V1b receptor knockout reduces aggressive behavior in male mice , 2002, Molecular Psychiatry.

[43]  R. Hodgson,et al.  Characterization of the V1a antagonist, JNJ-17308616, in rodent models of anxiety-like behavior , 2009, Psychopharmacology.

[44]  A. Meyer-Lindenberg,et al.  5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression , 2005, Nature Neuroscience.

[45]  Thomas E. Nichols,et al.  Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate , 2002, NeuroImage.

[46]  G. Griebel,et al.  Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Karl J. Friston,et al.  False discovery rate revisited: FDR and topological inference using Gaussian random fields , 2009, NeuroImage.

[48]  Michael Davis,et al.  The amygdala , 2000, Current Biology.

[49]  E. Bullmore,et al.  How Good Is Good Enough in Path Analysis of fMRI Data? , 2000, NeuroImage.

[50]  C. Wotjak,et al.  Behavioural impact of intraseptally released vasopressin and oxytocin in rats , 2000, Experimental physiology.

[51]  Francesco Fera,et al.  The Amygdala Response to Emotional Stimuli: A Comparison of Faces and Scenes , 2002, NeuroImage.

[52]  L. Ingber Very fast simulated re-annealing , 1989 .

[53]  J. Born,et al.  Brain potential changes after intranasal vs. intravenous administration of vasopressin: evidence for a direct nose-brain pathway for peptide effects in humans , 1996, Biological Psychiatry.

[54]  F. Loup,et al.  Localization of high-affinity binding sites for oxytocin and vasopressin in the human brain. An autoradiographic study , 1991, Brain Research.