A flexible approach to user-defined symbolic granularities in temporal databases

User-defined granularities, calendars and periodicities are gaining an increasing relevance in the area of temporal databases (TDB). In this paper, we discuss the advantages of adopting for TDBs a modular framework, based on a family of symbolic languages, defined starting from a set of mutually orthogonal properties that characterize periodicity. First, we show that one of the languages covers the notion of granularity (as defined in the TDB glossary), so that it can be used in order to define validity times of facts in a TDB. Second, we discuss the usefulness of using more expressive languages in the family to achieve such a goal. Third, we explore how such languages can be used in order to deal in an intensional way with infinite periodic data in temporal (relational) databases.

[1]  Paolo Terenziani,et al.  Symbolic User-Defined Periodicity in Temporal Relational Databases , 2003, IEEE Trans. Knowl. Data Eng..

[2]  David Forster,et al.  A Representation for Collections of Temporal Intervals , 1986, AAAI.

[3]  Christian S. Jensen,et al.  Point-versus interval-based temporal data models , 1998, Proceedings 14th International Conference on Data Engineering.

[4]  Jan Chomicki,et al.  Finite representation of infinite query answers , 1993, TODS.

[5]  Richard T. Snodgrass,et al.  Evaluation of relational algebras incorporating the time dimension in databases , 1991, CSUR.

[6]  Claudio Bettini,et al.  Symbolic representation of user-defined time granularities , 1999, Proceedings. Sixth International Workshop on Temporal Representation and Reasoning. TIME-99.

[7]  James Clifford,et al.  On Periodicity in Temporal Databases , 1995, Inf. Syst..

[8]  Richard T. Snodgrass,et al.  Reconciling Point-based and Interval-based Semantics in Temporal Relational Databases : A Proper Treatment of the Telic / Atelic Distinction , 2001 .

[9]  Paolo Terenziani,et al.  A lattice of classes of user-defined symbolic periodicities , 2004, Proceedings. 11th International Symposium on Temporal Representation and Reasoning, 2004. TIME 2004..

[10]  Sushil Jajodia,et al.  Time Granularities in Databases, Data Mining, and Temporal Reasoning , 2000, Springer Berlin Heidelberg.

[11]  Curtis E. Dyreson,et al.  A Glossary of Time Granularity Concepts , 1997, Temporal Databases, Dagstuhl.

[12]  Pierre Wolper,et al.  Handling Infinite Temporal Data , 1995, J. Comput. Syst. Sci..

[13]  Sushil Jajodia,et al.  An Algebraic Representation of Calendars , 2004, Annals of Mathematics and Artificial Intelligence.

[14]  Z. Meral Özsoyoglu,et al.  Modeling and Quering Periodic Temporal Databases , 1995, DEXA Workshop.

[15]  Shashi K. Gadia,et al.  A homogeneous relational model and query languages for temporal databases , 1988, TODS.

[16]  David Toman,et al.  Point-Based Temporal Extensions of SQL and Their Efficient Implementation , 1997, Temporal Databases, Dagstuhl.

[17]  James P. Delgrande,et al.  Expressing Time Intervals and Repetition Within a Formalization of Calendars , 1998, Comput. Intell..

[18]  Jan Chomicki,et al.  Temporal Logic in Information Systems , 1998, Logics for Databases and Information Systems.

[19]  Paolo Terenziani,et al.  A mathematical framework for the semantics of symbolic languages representing periodic time , 2004, Proceedings. 11th International Symposium on Temporal Representation and Reasoning, 2004. TIME 2004..

[20]  Richard T. Snodgrass,et al.  The TSQL2 Temporal Query Language , 1995 .

[21]  M. Baudinet,et al.  Temporal Databases: Beyond Finite Extensions (position paper) , 1993 .

[22]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[23]  Paolo Terenziani,et al.  Orthogonal Operators for User-Defined Symbolic Periodicities , 2004, AIMSA.

[24]  David Toman,et al.  Point vs. interval-based query languages for temporal databases (extended abstract) , 1996, PODS.