Estimation of event-related synchronization changes by a new TVAR method

The modeling of nonstationary electroencephalogram (EEG) with time-varying autoregressive (TVAR) models is discussed. The classical least squares TVAR approach is modified so that prior assumptions about the signal can be taken into account in an optimal way. The method is then applied to the estimation of event-related synchronization changes in the EEG. The results show that the new approach enables effective estimation of the parameter evolution of the time-varying EEG with better time resolution compared to previous methods. The new method also allows single-trial analysis of the event-related synchronization.

[1]  L. A. Liporace Linear estimation of nonstationary signals. , 1975, The Journal of the Acoustical Society of America.

[2]  G. Bodenstein,et al.  Feature extraction from the electroencephalogram by adaptive segmentation , 1977, Proceedings of the IEEE.

[3]  W. Gersch Spectral analysis of EEG's by autoregressive decomposition of time series , 1970 .

[4]  B H Jansen,et al.  Demonstration of segmentation techniques for EEG records. , 1978, International journal of bio-medical computing.

[5]  A. Willsky,et al.  Time-varying parametric modeling of speech☆ , 1983 .

[6]  N. Kawabata A nonstationary analysis of the electroencephalogram. , 1973, IEEE transactions on bio-medical engineering.

[7]  G Pfurtscheller,et al.  Event-related desynchronization (ERD) during visual processing. , 1994, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[8]  Gene H. Golub,et al.  Matrix computations , 1983 .

[9]  B. Porat,et al.  Digital Spectral Analysis with Applications. , 1988 .

[10]  T. Rao The Fitting of Non-stationary Time-series Models with Time-dependent Parameters , 1970 .

[11]  Yves Grenier,et al.  Time-dependent ARMA modeling of nonstationary signals , 1983 .

[12]  L. Zetterberg Estimation of parameters for a linear difference equation with application to EEG analysis , 1969 .

[13]  M. Barlaud,et al.  Results on AR-modelling of nonstationary signals , 1987 .

[14]  O. Markand,et al.  Alpha Rhythms , 1990, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[15]  P B Fenwick,et al.  Application of the autoregressive model to E.E.G. analysis. , 1969, Agressologie: revue internationale de physio-biologie et de pharmacologie appliquees aux effets de l'agression.

[16]  Erkki Oja,et al.  Subspace methods of pattern recognition , 1983 .

[17]  W Gersch,et al.  Automatic classification of multivariate EEGs using an amount of information measure and the eigenvalues of parametric time series model features. , 1977, Computers and biomedical research, an international journal.

[18]  Genshiro Kitagawa,et al.  A multivariate time varying autoregressive modeling of nonstationary covariance time series , 1983, The 22nd IEEE Conference on Decision and Control.

[19]  T. Bohlin Analysis of EEG signals with changing spectra using a short-word Kalman estimator , 1977 .