Effect of adding carbon nanotubes on the thermal conductivity of steel fiber-reinforced concrete

[1]  F. Faghih,et al.  Structural performance of steel-concrete sandwich beams with carbon nanofiber reinforcement , 2019, Engineering Structures.

[2]  Kejin Wang,et al.  Evolution of mechanical properties of steel fiber-reinforced rubberized concrete (FR-RC) , 2019, Composites Part B: Engineering.

[3]  R. Ansari,et al.  Finite element analysis of thermal conductivities of unidirectional multiphase composites , 2019, Composite Interfaces.

[4]  R. Ansari,et al.  Overall thermal conductivity of unidirectional hybrid polymer nanocomposites containing SiO2 nanoparticles , 2018, International Journal of Mechanics and Materials in Design.

[5]  Z. Shui,et al.  Steel fibre content and interconnection induced electrochemical corrosion of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) , 2018, Cement and Concrete Composites.

[6]  Vitor Moreira de Alencar Monteiro,et al.  On the mechanical behavior of polypropylene, steel and hybrid fiber reinforced self-consolidating concrete , 2018, Construction and Building Materials.

[7]  Seunghyuk Lee,et al.  Hybrid effects of steel fiber and carbon nanotube on self-sensing capability of ultra-high-performance concrete , 2018, Construction and Building Materials.

[8]  M. Hassanzadeh-Aghdam,et al.  Effect of CNT coating on the overall thermal conductivity of unidirectional polymer hybrid nanocomposites , 2018, International Journal of Heat and Mass Transfer.

[9]  P. Hodgson,et al.  Latest Developments in Modeling and Characterization of Joining Metal Based Hybrid Materials , 2018 .

[10]  Xun Yu,et al.  Carbon nanotubes reinforced reactive powder concrete , 2018, Composites Part A: Applied Science and Manufacturing.

[11]  R. Ansari,et al.  Effect of aluminum carbide interphase on the thermomechanical behavior of carbon nanotube/aluminum nanocomposites , 2018, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications.

[12]  R. Ansari,et al.  Effective elastoplastic properties of carbon nanotube-reinforced aluminum nanocomposites considering the residual stresses , 2018 .

[13]  Seung-Ho Lee,et al.  Self-sensing capability of ultra-high-performance concrete containing steel fibers and carbon nanotubes under tension , 2018, Sensors and Actuators A: Physical.

[14]  Shehab Mourad,et al.  Evaluation of mechanical properties of steel fiber reinforced concrete with different strengths of concrete , 2018 .

[15]  Luigi Biolzi,et al.  The effect of steel and polypropylene fibers on the chloride diffusivity and drying shrinkage of high-strength concrete , 2018 .

[16]  M. Pavese,et al.  Cement-based composites containing functionalized carbon fibers , 2018 .

[17]  R. Ansari,et al.  Micromechanical estimation of biaxial thermomechanical responses of hybrid fiber-reinforced metal matrix nanocomposites containing carbon nanotubes , 2018 .

[18]  G. Kim,et al.  Electrical resistivity reduction with pitch-based carbon fiber into multi-walled carbon nanotube (MWCNT)-embedded cement composites , 2018 .

[19]  R. Ansari,et al.  Micromechanics-based characterization of mechanical properties of fuzzy fiber-reinforced composites containing carbon nanotubes , 2018 .

[20]  M. Hassanzadeh-Aghdam,et al.  Micromechanical modeling of thermal conducting behavior of general carbon nanotube-polymer nanocomposites , 2018 .

[21]  L. Tian,et al.  A Review on the Strengthening of Nanostructured Materials , 2018 .

[22]  Myungsoo Kim,et al.  Prediction of thermal conductivities of carbon-containing fiber-reinforced and multiscale hybrid composites , 2018 .

[23]  J. Ou,et al.  Mechanical properties and reinforcing mechanisms of cementitious composites with different types of multiwalled carbon nanotubes , 2017 .

[24]  K. Tang Stray current induced corrosion of steel fibre reinforced concrete , 2017 .

[25]  Fang Wang,et al.  Theoretical and experimental study on multi-phase model of thermal conductivity for fiber reinforced concrete , 2017 .

[26]  R. Ansari,et al.  Micromechanics-Based Thermoelastic Analysis of Polyimide Nanocomposites Containing 3D Randomly Oriented Carbon Nanotubes , 2017 .

[27]  Eduardo Júlio,et al.  Influence of concrete strength and steel fibre geometry on the fibre/matrix interface , 2017 .

[28]  M. Hassanzadeh-Aghdam,et al.  A comprehensive analysis of mechanical characteristics of carbon nanotube-metal matrix nanocomposites , 2017 .

[29]  T. Plagué,et al.  Influence of fiber type and fiber orientation on cracking and permeability of reinforced concrete under tensile loading , 2017 .

[30]  L. Biolzi,et al.  Response of steel fiber reinforced high strength concrete beams: Experiments and code predictions , 2017 .

[31]  Kamal H. Khayat,et al.  Mechanical Properties of Ultra-High-Performance Concrete Enhanced with Graphite Nanoplatelets and Carbon Nanofibers , 2016 .

[32]  E. Redaelli,et al.  Dispersion of multi-walled carbon nanotubes and its effects on the properties of cement composites , 2016 .

[33]  Y. Tai,et al.  Performance of deformed steel fibers embedded in ultra-high performance concrete subjected to various pullout rates , 2016 .

[34]  Huamin Zhou,et al.  Thermal conductivity of aligned CNT/polymer composites using mesoscopic simulation , 2016 .

[35]  Fang Wang,et al.  An experimental study on thermal conductivity of iron ore sand cement mortar , 2015 .

[36]  Yunping Xi,et al.  Mesoscale model for thermal conductivity of concrete , 2015 .

[37]  H. Wang,et al.  Interaction analysis of multiple coated fibers in cement composites by special n-sided interphase/fiber elements , 2015 .

[38]  S. Kim,et al.  Thermal conductivity of polymer composites based on the length of multi-walled carbon nanotubes , 2015 .

[39]  Y. Zare Effects of interphase on tensile strength of polymer/CNT nanocomposites by Kelly–Tyson theory , 2015 .

[40]  M. C. Ray,et al.  Effective thermal conductivities of a novel fuzzy carbon fiber heat exchanger containing wavy carbon nanotubes , 2014 .

[41]  Viktor Mechtcherine,et al.  Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix , 2012 .

[42]  Nemkumar Banthia,et al.  Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing , 2012 .

[43]  Serkan Tokgoz,et al.  Experimental behaviour of steel fiber high strength reinforced concrete and composite columns , 2012 .

[44]  Alex Hak-Chul Shin,et al.  Thermal conductivity of ternary mixtures for concrete pavements , 2012 .

[45]  M. Shen,et al.  Thermal conductivity model of filled polymer composites , 2011 .

[46]  Y. Ju,et al.  Investigation on thermophysical properties of reactive powder concrete , 2011 .

[47]  K. Goodson,et al.  Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density. , 2011, ACS nano.

[48]  Pallab Barai,et al.  A theory of plasticity for carbon nanotube reinforced composites , 2011 .

[49]  S. R. Bakshi,et al.  Thermal conductivity of carbon nanotube reinforced aluminum composites: A multi-scale study using object oriented finite element method , 2010 .

[50]  R. Baughman,et al.  Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes , 2010, Nanotechnology.

[51]  J. Fischer,et al.  Thermal Conductivity of Single-Walled Carbon Nanotube/PMMA Nanocomposites , 2007 .

[52]  J. Fischer,et al.  Single Wall Carbon Nanotube/Polyethylene Nanocomposites: Thermal and Electrical Conductivity , 2007 .

[53]  I. Tavman,et al.  A Numerical and Experimental Study on Thermal Conductivity of Particle Filled Polymer Composites , 2006 .

[54]  E. Pop,et al.  Thermal conductance of an individual single-wall carbon nanotube above room temperature. , 2005, Nano letters.

[55]  Arjun G. Yodh,et al.  Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites , 2005 .

[56]  Yuanhua Lin,et al.  Interface effect on thermal conductivity of carbon nanotube composites , 2004 .

[57]  Scott T. Huxtable,et al.  Interfacial heat flow in carbon nanotube suspensions , 2003, Nature materials.

[58]  D. R. Seshu,et al.  Constitutive behaviour of confined fibre reinforced concrete under axial compression , 2003 .

[59]  Jin-keun Kim,et al.  An experimental study on thermal conductivity of concrete , 2003 .

[60]  Mohammad Iqbal Khan,et al.  Factors affecting the thermal properties of concrete and applicability of its prediction models , 2002 .

[61]  M. C. Nataraja,et al.  STRESS-STRAIN CURVES FOR STEEL-FIBER REINFORCED CONCRETE UNDER COMPRESSION , 1999 .

[62]  C. Nan,et al.  Effective thermal conductivity of particulate composites with interfacial thermal resistance , 1997 .

[63]  Zvi Hashin,et al.  Thermoelastic properties and conductivity of carbon/carbon fiber composites , 1990 .

[64]  D. J. Cook,et al.  The thermal conductivity of fibre-reinforced concrete , 1974 .

[65]  Filippo Ubertini,et al.  Micromechanics modeling of the electrical conductivity of carbon nanotube cement-matrix composites , 2017 .

[66]  C. Marsh,et al.  Effects of silica additives on fracture properties of carbon nanotube and carbon fiber reinforced Portland cement mortar , 2015 .

[67]  Xiaoqiao He,et al.  The effective properties and local aggregation effect of CNT/SMP composites , 2012 .

[68]  Wang Xuan-cang Influence Factor of Thermal Conductivity of Cement Concrete and Its Prediction Model , 2012 .

[69]  Y. Chiu,et al.  Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation , 2010 .

[70]  Meng-Kao Yeh,et al.  Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes , 2006 .