Multigrid based preconditioners for the numerical solution of two-dimensional heterogeneous problems in geophysics

We study methods for the numerical solution of the Helmholtz equation for two-dimensional applications in geophysics. The common framework of the iterative methods in our study is a combination of an inner iteration with a geometric multigrid method used as a preconditioner and an outer iteration with a Krylov subspace method. The preconditioning system is based on either a pure or shifted Helmholtz operator. A multigrid iteration is used to approximate the inverse of this operator. The proposed solution methods are evaluated on a complex benchmark in geophysics involving highly variable coefficients and high wavenumbers. We compare this preconditioned iterative method with a direct method and a hybrid method that combines our iterative approach with a direct method on a reduced problem. We see that the hybrid method outperforms both the iterative and the direct approach.

[1]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[2]  S. Operto,et al.  Mixed‐grid and staggered‐grid finite‐difference methods for frequency‐domain acoustic wave modelling , 2004 .

[3]  Gary Cohen Higher-Order Numerical Methods for Transient Wave Equations , 2001 .

[4]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[5]  Julien Langou,et al.  Algorithm 842: A set of GMRES routines for real and complex arithmetics on high performance computers , 2005, TOMS.

[6]  Dianne P. O'Leary,et al.  A Multigrid Method Enhanced by Krylov Subspace Iteration for Discrete Helmholtz Equations , 2001, SIAM J. Sci. Comput..

[7]  Cornelis Vuik,et al.  A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..

[8]  P. Lailly,et al.  Marmousi, model and data , 1990 .

[9]  Jon F. Claerbout,et al.  Imaging the Earth's Interior , 1985 .

[10]  Yair Shapira,et al.  Multigrid Techniques for Highly Indefinite Equations , 1996 .

[11]  E. Turkel,et al.  Operated by Universities Space Research AssociationAccurate Finite Difference Methods for Time-harmonic Wave Propagation* , 1994 .

[12]  John K. Reid,et al.  The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.

[13]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[14]  K. Stüben,et al.  Multigrid methods: Fundamental algorithms, model problem analysis and applications , 1982 .

[15]  Cornelis Vuik,et al.  A new iterative solver for the time-harmonic wave equation , 2006 .

[16]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..

[17]  J. E. Dendy,et al.  Black box multigrid for systems , 1986 .

[18]  J. E. Dendy Black box multigrid for nonsymmetric problems , 1983 .

[19]  Cornelis W. Oosterlee,et al.  FOURIER ANALYSIS OF GMRES ( m ) PRECONDITIONED BY MULTIGRID , 2000 .

[20]  P. M. De Zeeuw,et al.  Matrix-dependent prolongations and restrictions in a blackbox multigrid solver , 1990 .

[21]  Patrick R. Amestoy,et al.  Multifrontal parallel distributed symmetric and unsymmetric solvers , 2000 .

[22]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[23]  Moshe Israeli,et al.  Towards Automatic Multigrid Algorithms for SPD, Nonsymmetric and Indefinite Problems , 1996, SIAM J. Sci. Comput..

[24]  Soohyun Kim,et al.  Multigrid Simulation for High-Frequency Solutions of the Helmholtz Problem in Heterogeneous Media , 2002, SIAM J. Sci. Comput..