A Game-theoretic Approach to Behavioural Visualisation

To bridge the gap between domain experts and formal methods experts, visualisations of the behaviour of formal models are used to let the domain expert understand and experiment with the formal model. In this paper we provide a definition of visualisations, founded in game-theory, which regards visualisations as transition systems synchronised with formal models. We show example visualisations, use them to show winning strategies of games, and demonstrate how an industrial application of formal models benefited from this approach.

[1]  Kurt Jensen,et al.  Coloured Petri nets (2nd ed.): basic concepts, analysis methods and practical use: volume 1 , 1996 .

[2]  David Harel,et al.  Come, Let’s Play , 2003, Springer Berlin Heidelberg.

[3]  Fa A Comprare,et al.  Come , 1890, The Hospital.

[4]  André Arnold,et al.  Finite transition systems - semantics of communicating systems , 1994, Prentice Hall international series in computer science.

[5]  Jonathan Billington,et al.  Verification of a Revised WAP Wireless Transaction Protocol , 2002, ICATPN.

[6]  Dimitra Giannakopoulou,et al.  Graphical animation of behavior models , 2000, Proceedings of the 2000 International Conference on Software Engineering. ICSE 2000 the New Millennium.

[7]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[8]  Lars Michael Kristensen,et al.  Specification and Validation of an Edge Router Discovery Protocol for Mobile Ad Hoc Networks , 2004, SoftSpez Final Report.

[9]  Kim G. Larsen,et al.  Efficient On-the-Fly Algorithms for the Analysis of Timed Games , 2005, CONCUR.

[10]  Kurt Jensen,et al.  Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use. Vol. 2, Analysis Methods , 1992 .

[11]  Jeff Magee,et al.  Concurrency - state models and Java programs , 2006 .

[12]  Kees M. van Hee,et al.  The EXSPECT Tool , 1991, VDM Europe.

[13]  Claus Bossen,et al.  Context-descriptive prototypes and their application to medicine administration , 2004, DIS '04.

[14]  S. Lane,et al.  Let's Play! , 2002 .

[15]  C. Petri Kommunikation mit Automaten , 1962 .

[16]  Ekkart Kindler,et al.  The Petri Net Kernel , 2003, Petri Net Technology for Communication-Based Systems.

[17]  M. Westergaard,et al.  Game Coloured Petri Nets , 2006 .

[18]  Robin Milner,et al.  Communicating and mobile systems - the Pi-calculus , 1999 .

[19]  Michael Westergaard,et al.  Model-Based Prototyping of an Interoperability Protocol for Mobile Ad-Hoc Networks , 2005, IFM.

[20]  Ekkart Kindler,et al.  3D-Visualization of Petri Net Models: Concept and Realization , 2004, ICATPN.

[21]  Scott A. Smolka,et al.  Simple Linear-Time Algorithms for Minimal Fixed Points (Extended Abstract) , 1998, ICALP.

[22]  André Arnold,et al.  Finite transition systems , 1994 .

[23]  Michael Westergaard,et al.  The BRITNeY Suite Animation Tool , 2006, ICATPN.

[24]  Davide Sangiorgi,et al.  Communicating and Mobile Systems: the π-calculus, , 2000 .