Displaying Pain Sensation in Midair by Thermal Grill Illusion

In this study, we propose a method to display a pain sensation by thermal grill illusion in a noncontact manner. An ultrasound-driven cold air flow using mist vaporization cools a spot on a skin while a light beam irradiation produces a hot spot near the cooled spot. The cold and hot stimuli presented simultaneously produce a pain sensation without damage of the skin. We clarify the relationship between the pain sensation and the temperature change on the skin observed by a thermography camera. Since it is a noncontact method, we can evaluate the precise condition of the skin temperature distribution for the thermal grill illusion. This study provides a scientific tool to clarify the thermal grill illusion as well as a practical pain display.

[1]  Dieter Kleinböhl,et al.  The thermal grill illusion and what is painful about it , 2011, Neuroscience Letters.

[2]  A. Moritz,et al.  Studies of Thermal Injury: III. The Pathology and Pathogenesis of Cutaneous Burns. An Experimental Study. , 1947, The American journal of pathology.

[3]  Ryuta Okazaki,et al.  Mutual referral of thermal sensation between two thermal-tactile stimuli , 2014, HAPTICS.

[4]  Yasutoshi Makino,et al.  Remotely displaying cooling sensation via ultrasound-driven air flow , 2018, 2018 IEEE Haptics Symposium (HAPTICS).

[5]  S. Nomura,et al.  Streaming Induced by Ultrasonic Vibration in a Water Vessel , 2000 .

[6]  Hiroyuki Kajimoto,et al.  Development of roller-type itch-relief device employing alternating hot and cold stimuli , 2013, AH.

[7]  Sriram Subramanian,et al.  UltraHaptics: multi-point mid-air haptic feedback for touch surfaces , 2013, UIST.

[8]  Hiroyuki Shinoda,et al.  Non-contact Method for Producing Tactile Sensation Using Airborne Ultrasound , 2008, EuroHaptics.

[9]  Hsin-Ni Ho,et al.  Contribution of thermal cues to material discrimination and localization , 2006, Perception & psychophysics.

[10]  H. Shinoda,et al.  Electronically steerable ultrasound-driven long narrow air stream , 2017, 1704.00414.

[11]  Adam Danielsson,et al.  A thermal information display for mobile applications , 2007, Mobile HCI.

[12]  Ryuta Okazaki,et al.  Mutual referral of thermal sensation between two thermal-tactile stimuli , 2014, 2014 IEEE Haptics Symposium (HAPTICS).

[13]  A. Moritz,et al.  Studies of Thermal Injury: II. The Relative Importance of Time and Surface Temperature in the Causation of Cutaneous Burns. , 1947, The American journal of pathology.

[14]  Takashi Maeno,et al.  Presentation of Rapid Temperature Change Using Spatially Divided Hot and Cold Stimuli , 2013, J. Robotics Mechatronics.

[15]  Satoshi Saga Thermal-Radiation-Based Haptic Display - Laser-Emission-Based Radiation System , 2018, AsiaHaptics.

[16]  井上 良紀,et al.  流体力学用語集 非線形音響学(Nonlinear acoustics) , 1995 .

[17]  Hiroyuki Shinoda,et al.  Noncontact Tactile Display Based on Radiation Pressure of Airborne Ultrasound , 2010, IEEE Transactions on Haptics.

[18]  Peter Fransson,et al.  Evidence for Thalamic Involvement in the Thermal Grill Illusion: An fMRI Study , 2011, PloS one.

[19]  Yasutoshi Makino,et al.  Remotely Displaying Cooling Sensation Using Ultrasound Mist Beam , 2018, AsiaHaptics.