A Study of the Correlation between the Amplification of the Fe Kα Line and the X-Ray Continuum of Quasars due to Microlensing

The observed enhancement of the Fe Kα line in three gravitationally lensed QSOs (MG J0414+0534, QSO 2237+0305, and H1413+117) is interpreted in terms of microlensing, even when equivalent X-ray continuum amplification is not observed. In order to interpret these observations, first we studied the effects of microlensing on quasar spectra produced by a straight fold caustic crossing over a standard relativistic accretion disk. The disk emission was analyzed using the ray-tracing method, considering Schwarzschild and Kerr metrics. When the emission is separated into two regions (an inner disk corresponding to the Fe Kα line and an outer annulus corresponding to the continuum, or vice versa), we find microlensing events that enhance the Fe Kα line without noticeable amplification of the X-ray continuum, but only during a limited time interval. Continuum amplification is expected if a complete microlensing event is monitored. Second, we studied a more realistic case of amplification by a caustic magnification pattern. In this case we could satisfactorily explain the observations if the Fe Kα line is emitted from the innermost part of the accretion disk while the continuum is emitted from a larger region. We also studied the chromatic effects of microlensing, finding that the radial distribution of temperature in the accretion disk, combined with microlensing itself, can induce wavelength-dependent variability of ~30% for microlenses with very small masses. All these results show that X-ray monitoring of gravitational lenses is a method well suited for studying the innermost structure of active galactic nucleus accretion disks.

[1]  Richard H. Price,et al.  Black Holes , 1997 .

[2]  C. Fassnacht,et al.  Impact of gravitational lensing on cosmology , 2005 .

[3]  Cambridge,et al.  Evidence of an Untruncated Accretion Disk in the Broad-Line Radio Galaxy 4C 74.26 , 2005, astro-ph/0502461.

[4]  L. Popović,et al.  The influence of gravitational lensing on the spectra of lensed QSOs , 2004, astro-ph/0411287.

[5]  P. O’Brien,et al.  XMM–Newton observations of high-luminosity radio-quiet quasi-stellar objects , 2004, astro-ph/0405458.

[6]  T. Yaqoob,et al.  An Extended Scheme for Fitting X-Ray Data with Accretion Disk Spectra in the Strong Gravity Regime , 2004, astro-ph/0403541.

[7]  L. Popović,et al.  On the contribution of microlensing to X-ray variability of high-redshifted QSOs , 2004, astro-ph/0403254.

[8]  J. Frieman,et al.  Microlensing of the Broad Emission Line Region in the Quadruple Lens SDSS J1004+4112 , 2004, astro-ph/0402345.

[9]  E. Agol,et al.  Chandra Observations of the Cloverleaf Quasar H1413+117: A Unique Laboratory for Microlensing Studies of a LoBAL Quasar , 2004, astro-ph/0401240.

[10]  M. Eracleous,et al.  A Study of Quasar Evolution in the X-Ray Band with the Aid of Gravitational Lensing , 2004, astro-ph/0401013.

[11]  R. Ibata,et al.  Gravitational microlensing of quasar broad‐line regions at large optical depths , 2003, astro-ph/0310818.

[12]  C. Kochanek Quantitative Interpretation of Quasar Microlensing Light Curves , 2003, astro-ph/0307422.

[13]  Jian-Min Wang,et al.  The central engines of radio-loud quasars , 2003, astro-ph/0308040.

[14]  L. Popović,et al.  INFLUENCE OF MICROLENSING ON THE ACTIVE GALACTIC NUCLEUS Fe Ka LINE , 2003 .

[15]  N. Kardashev,et al.  Magnetic fields in active galactic nuclei and microquasars , 2003 .

[16]  A. Repin Research Note Signatures of highly inclined accretion disks in Galactic Black Hole Candidates and AGNs , 2003, astro-ph/0304459.

[17]  E. Agol,et al.  Accepted by ApJ Preprint typeset using L ATEX style emulateapj v. 11/12/01 CHANDRA OBSERVATIONS OF QSO 2237+0305 , 2000 .

[18]  A. Fabian,et al.  The iron line in MCG—6-30-15 from XMM—Newton: evidence for gravitational light bending? , 2003, astro-ph/0301588.

[19]  G. Hasinger PROCEEDINGS OF THE INTERNATIONAL WORKSHOP XEUS - STUDYING THE EVOLUTION OF THE HOT UNIVERSE , 2003 .

[20]  L. Popović,et al.  The influence of microlensing on the shape of the AGN Fe K alpha line , 2002, astro-ph/0211523.

[21]  W. Bian,et al.  Masses, accretion rates and inclinations of AGNs , 2002, astro-ph/0208520.

[22]  E. Mediavilla,et al.  The Nature and Size of the Optical Continuum Source in QSO 2237+0305 , 2002, astro-ph/0207236.

[23]  L. Popović,et al.  The Influence of Gravitational Microlensing on the Broad Emission Lines of Quasars , 2002, astro-ph/0205407.

[24]  A. Zakharov,et al.  Model radiation spectrum for an accretion disk near a rotating black hole , 2002 .

[25]  E. Agol,et al.  Caught in the Act: Chandra Observations of Microlensing of the Radio-loud Quasar MG J0414+0534 , 2001, astro-ph/0112112.

[26]  L. Popović,et al.  The influence of microlensing on spectral line shapes generated by a relativistic accretion disc , 2001 .

[27]  S. Mineshige,et al.  X-Ray Microlensing of Bright Quasars , 2001, Publications of the Astronomical Society of Australia.

[28]  Y. Sekimoto,et al.  ASCA Observation of the Lensed Blazar PKS 1830–211: An Implication of X-Ray Microlensing , 2001 .

[29]  E. Agol,et al.  Predicting caustic-crossing high-magnification events in Q2237+0305 , 2000, astro-ph/0001306.

[30]  T. J. Turner,et al.  The Properties of the Relativistic Iron K-Line in NGC 3516 , 1999, astro-ph/9907193.

[31]  E. Turner,et al.  An X-Ray Microlensing Test of AU-Scale Accretion Disk Structure in Q2237+0305 , 1998, astro-ph/9804251.

[32]  K. Nandra,et al.  ASCA Observations of Seyfert 1 Galaxies. II. Relativistic Iron Kα Emission , 1996, astro-ph/9606169.

[33]  J. Wambsganss,et al.  Microlensed light curves for thin accretion disks around Schwarzschild and Kerr black holes , 1992 .

[34]  J. Wambsganss,et al.  Expected color variations of the gravitationally microlensed QSO 2237 + 0305 , 1991 .

[35]  P. Schneider,et al.  Interpretation of the microlensing event in QSO 2237+0305 , 1990 .

[36]  J. Wambsganss,et al.  A Microlensing Model for QSO 2237+0305 , 1990 .

[37]  P. Seymour Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects , 1984 .

[38]  Saul A. Teukolsky,et al.  Black Holes, White Dwarfs, and Neutron Stars , 1983 .

[39]  Saul A. Teukolsky,et al.  White Dwarfs and Neutron Stars: The Physics of Compact Objects , 1983 .