D Face recognition using covariance based descriptors

In this paper, we propose a new 3D face recognition method based on covariance descriptors. Unlike feature-based vectors, covariance-based descriptors enable the fusion and the encoding of different types of features and modalities into a compact representation. The covariance descriptors are symmetric positive definite matrices which can be viewed as an inner product on the tangent space of (S ym+d ) the manifold of Symmetric Positive Definite (SPD) matrices. In this article, we study geodesic distances on the S ym+d manifold and use them as metrics for 3D face matching and recognition. We evaluate the performance of the proposed method on the FRGCv2 and the GAVAB databases and demonstrate its superiority compared to other state of the art methods.

[1]  Hassan Ghassemian,et al.  D Face Recognition Method Using 2 DPCA-Euclidean Distance Classification , 2012 .

[2]  Patrick J. Flynn,et al.  Overview of the face recognition grand challenge , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[3]  Alan C. Bovik,et al.  Anthropometric 3D Face Recognition , 2010, International Journal of Computer Vision.

[4]  J. Munkres ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .

[5]  Maher Moakher,et al.  Means of Hermitian positive-definite matrices based on the log-determinant α-divergence function , 2012 .

[6]  Patrick J. Flynn,et al.  A survey of approaches and challenges in 3D and multi-modal 3D + 2D face recognition , 2006, Comput. Vis. Image Underst..

[7]  Zhengyou Zhang,et al.  Iterative point matching for registration of free-form curves and surfaces , 1994, International Journal of Computer Vision.

[8]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[9]  S B Puri,et al.  3D FACE RECOGNITION UNDER EXPRESSIONS, OCCLUSIONS AND POSE VARIATION , 2018 .

[10]  C. Villani Optimal Transport: Old and New , 2008 .

[11]  Larry S. Davis,et al.  Covariance discriminative learning: A natural and efficient approach to image set classification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Paul J. Besl,et al.  Method for registration of 3-D shapes , 1992, Other Conferences.

[13]  Jim Austin,et al.  Three-dimensional face recognition: an eigensurface approach , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[14]  Fatih Murat Porikli,et al.  Pedestrian Detection via Classification on Riemannian Manifolds , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Rabia Jafri,et al.  A Survey of Face Recognition Techniques , 2009, J. Inf. Process. Syst..

[16]  Thomas Vetter,et al.  Face Recognition Based on Fitting a 3D Morphable Model , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Yongsheng Gao,et al.  Face recognition across pose: A review , 2009, Pattern Recognit..

[18]  Maurício Pamplona Segundo,et al.  3D Face Recognition Using Simulated Annealing and the Surface Interpenetration Measure , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Patrick J. Flynn,et al.  A Region Ensemble for 3-D Face Recognition , 2008, IEEE Transactions on Information Forensics and Security.

[20]  Patrik Kamencay,et al.  2D-3D Face Recognition Method Basedon a Modified CCA-PCA Algorithm , 2014 .

[21]  Hao Zhang,et al.  Expression-insensitive 3D face recognition using sparse representation , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Mohammed Bennamoun,et al.  Keypoint Detection and Local Feature Matching for Textured 3D Face Recognition , 2007, International Journal of Computer Vision.

[23]  Di Huang,et al.  3-D Face Recognition Using eLBP-Based Facial Description and Local Feature Hybrid Matching , 2012, IEEE Transactions on Information Forensics and Security.

[24]  Mohammad H. Mahoor,et al.  Face recognition based on 3D ridge images obtained from range data , 2009, Pattern Recognit..

[25]  Fatih Murat Porikli,et al.  Region Covariance: A Fast Descriptor for Detection and Classification , 2006, ECCV.

[26]  Andrea F. Abate,et al.  2D and 3D face recognition: A survey , 2007, Pattern Recognit. Lett..

[27]  Xiaoou Tang,et al.  Robust 3D Face Recognition by Local Shape Difference Boosting , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Maher Moakher,et al.  A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices , 2005, SIAM J. Matrix Anal. Appl..

[29]  Anoop Cherian,et al.  Efficient similarity search for covariance matrices via the Jensen-Bregman LogDet Divergence , 2011, 2011 International Conference on Computer Vision.

[30]  T. Theoharis,et al.  Partial matching of interpose 3D facial data for face recognition , 2009, 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems.

[31]  Andrzej Cichocki,et al.  Families of Alpha- Beta- and Gamma- Divergences: Flexible and Robust Measures of Similarities , 2010, Entropy.

[32]  Suvrit Sra,et al.  A new metric on the manifold of kernel matrices with application to matrix geometric means , 2012, NIPS.

[33]  Zhizhou Wang,et al.  An affine invariant tensor dissimilarity measure and its applications to tensor-valued image segmentation , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[34]  Anuj Srivastava,et al.  Three-Dimensional Face Recognition Using Shapes of Facial Curves , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Tieniu Tan,et al.  A New Attempt to Fast Recognition Using 3D Eigenfaces , 2004 .

[36]  Gérard G. Medioni,et al.  Object modeling by registration of multiple range images , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[37]  N. Ayache,et al.  Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.

[38]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[39]  Hamid Laga,et al.  Covariance Descriptors for 3D Shape Matching and Retrieval , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Maria L. Rizzo,et al.  Brownian distance covariance , 2009, 1010.0297.

[41]  Michael G. Strintzis,et al.  Use of depth and colour eigenfaces for face recognition , 2003, Pattern Recognit. Lett..