Surface energy and work function of fcc and bcc crystals: Density functional study

Abstract The surface energies and work functions for six close-packed surfaces of 19 common fcc and bcc metals in the periodic table have been systematically calculated by means of the density functional theory (DFT) method. The accuracy of the results is established in comparison with the experimental and other theoretical values. The variations of work functions with the surface crystallographic orientation display a good regularity. For alkali metals, the work functions follow the sequence Φ(110) > Φ(133) > Φ(311) > Φ(120) > Φ(100) > Φ(111). But for the same crystal structure of bcc transition metals (Nb, Mo, Ta, W), the order is Φ(110) > Φ(133) > Φ(120) > Φ(111) > Φ(311) > Φ(100). The work functions for 3d, 4d and 5d transition fcc metals also display an obvious regularity and ordered as Φ(111) > Φ(100) > Φ(211) > Φ(123) > Φ(310) > Φ(110). Particular attention is paid to the surface energies anisotropy with the same crystal structure metals and the variations present a good regularity, too. Especially, a roughly inverse proportional relationship between the surface energy and work function is found.

[1]  X.Q.D. Li,et al.  The work function of kinked areas on clean, thermally rounded Pt and Rh crystallites: its dependence on the structure of terraces and edges , 1992 .

[2]  H. Skriver,et al.  Surface energy and work function of elemental metals. , 1992, Physical review. B, Condensed matter.

[3]  J. Kollár,et al.  Surface relaxation and stress for 5d transition metals , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[4]  W. A. Miller,et al.  Surface free energies of solid metals: Estimation from liquid surface tension measurements , 1977 .

[5]  S. Carabineiro,et al.  Adsorption of small molecules on gold single crystal surfaces , 2009 .

[6]  Scheffler,et al.  Trends of the surface relaxations, surface energies, and work functions of the 4d transition metals. , 1992, Physical review. B, Condensed matter.

[7]  G. Ertl,et al.  UV-photoelectron spectroscopy from xenon adsorbed on heterogeneous metal surfaces , 1980 .

[8]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[9]  K. Kokko,et al.  First-principles calculations for work function and surface energy of thin lithium films , 1996 .

[10]  Nicola Marzari,et al.  Surface energies, work functions, and surface relaxations of low index metallic surfaces from first principles , 2008, 0801.1077.

[11]  J. Perdew Simple theories for simple metals: Face-dependent surface energies and work functions , 1995 .

[12]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[13]  J. Gomes,et al.  Catalytic Reactions on Model Gold Surfaces: Effect of Surface Steps and of Surface Doping , 2011 .

[14]  S. Ferrer,et al.  Photoelectron-spectroscopy study of the electronic structure of Au and Ag overlayers on Pt(100), Pt(111), and Pt(997) surfaces , 1983 .

[15]  J. Kollár,et al.  The surface energy of metals , 1998 .

[16]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[17]  A. K. Niessen,et al.  Cohesion in metals , 1988 .

[18]  Göran V. Hansson,et al.  Photoemission study of the bulk and surface electronic structure of single crystals of gold , 1978 .

[19]  Smith,et al.  Stabilized jellium: Structureless pseudopotential model for the cohesive and surface properties of metals. , 1990, Physical review. B, Condensed matter.

[20]  Michael Rohwerder,et al.  High-resolution Kelvin probe microscopy in corrosion science: Scanning Kelvin probe force microscopy (SKPFM) versus classical scanning Kelvin probe (SKP) , 2007 .

[21]  H. Michaelson The work function of the elements and its periodicity , 1977 .

[22]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[23]  O. Eriksson,et al.  Surface energies and work functions of the transition metal carbides , 2004 .

[24]  W. Kohn,et al.  Theory of Metal Surfaces: Work Function , 1971 .

[25]  L. Vitos,et al.  Surface properties of 3d transition metals , 2011 .