Practical filtering with sequential parameter learning
暂无分享,去创建一个
Nicholas G. Polson | Jonathan R. Stroud | A. U.S. | Peter M Uller | A. U.S | Nicholas G. Polson | Peter Müller
[1] Nicholas G. Polson,et al. A Monte Carlo Approach to Nonnormal and Nonlinear State-Space Modeling , 1992 .
[2] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[3] R. Kohn,et al. On Gibbs sampling for state space models , 1994 .
[4] S. Frühwirth-Schnatter. Data Augmentation and Dynamic Linear Models , 1994 .
[5] N. Shephard,et al. Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .
[6] G. Kitagawa. Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .
[7] Jun S. Liu,et al. Sequential Monte Carlo methods for dynamic systems , 1997 .
[8] M. Pitt,et al. Likelihood analysis of non-Gaussian measurement time series , 1997 .
[9] N. G. Best,et al. Dynamic conditional independence models and Markov chain Monte Carlo methods , 1997 .
[10] S. Chib. Estimation and comparison of multiple change-point models , 1998 .
[11] N. Shephard,et al. Likelihood INference for Discretely Observed Non-linear Diffusions , 2001 .
[12] P. Bickel,et al. Asymptotic normality of the maximum-likelihood estimator for general hidden Markov models , 1998 .
[13] M. Pitt,et al. Filtering via Simulation: Auxiliary Particle Filters , 1999 .
[14] Simon J. Godsill,et al. Fixed-lag smoothing using sequential importance sampling , 1999 .
[15] Laurent Mevel,et al. Exponential Forgetting and Geometric Ergodicity in Hidden Markov Models , 2000, Math. Control. Signals Syst..
[16] Bjørn Eraker. MCMC Analysis of Diffusion Models With Application to Finance , 2001 .
[17] Gerhard Tutz,et al. State Space and Hidden Markov Models , 2001 .
[18] Nando de Freitas,et al. Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.
[19] Michael K. Pitt,et al. Auxiliary Variable Based Particle Filters , 2001, Sequential Monte Carlo Methods in Practice.
[20] Michael A. West,et al. Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.
[21] Genshiro Kitagawa,et al. Monte Carlo Smoothing and Self-Organising State-Space Model , 2001, Sequential Monte Carlo Methods in Practice.
[22] S. L. Scott. Bayesian Methods for Hidden Markov Models , 2002 .
[23] Geir Storvik,et al. Particle filters for state-space models with the presence of unknown static parameters , 2002, IEEE Trans. Signal Process..
[24] M. Pitt. Smooth Particle Filters for Likelihood Evaluation and Maximisation , 2002 .
[25] Jonathan R. Stroud,et al. Sequential Optimal Portfolio Performance: Market and Volatility Timing , 2002 .
[26] P. Fearnhead. MCMC, sufficient statistics and particle filters. , 2002 .
[27] P. Moral,et al. Sequential Monte Carlo samplers , 2002, cond-mat/0212648.
[28] Nicholas G. Polson,et al. Nonlinear State-Space Models With State-Dependent Variances , 2003 .
[29] Timothy J. Robinson,et al. Sequential Monte Carlo Methods in Practice , 2003 .
[30] Siem Jan Koopman,et al. State Space and Unobserved Component Models , 2004 .