Bicategorical Semantics for Nondeterministic Computation

We present a topological bicategorical syntax for the interaction between public and private information in classical information theory. This allows high-level graphical definitions of encrypted communication and secret sharing, including a characterization of their security properties, which are automatically satisfied with no extra axioms required. This analysis shows that these protocols have an identical abstract form to the quantum teleportation and dense coding procedures, giving a concrete mathematical analogy between quantum and classical computing. Specific implementations of these protocols as nondeterministic classical procedures are recovered by applying our formalism in a symmetric monoidal bicategory of matrices of relations. http://www.elsevier.nl/locate/entcs.

[1]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[2]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[3]  Bob Coecke,et al.  New Structures for Physics , 2011 .

[4]  Geoffrey Washburn,et al.  Cause and Effect: Type Systems for Effects and Dependencies , 2005 .

[5]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[6]  Dov M. Gabbay,et al.  Handbook of Quantum logic and Quantum Structures , 2007 .

[7]  Jamie Vicary Higher Semantics of Quantum Protocols , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[8]  Robert W. Spekkens,et al.  A classical analogue of negative information , 2005 .

[9]  Sally Popkorn,et al.  A Handbook of Categorical Algebra , 2009 .

[10]  Alexander Macfarlane A Treatise on Universal Algebra , 1899 .

[11]  Michael Stay,et al.  Compact Closed Bicategories , 2013, 1301.1053.

[12]  S. Popescu,et al.  Classical analog of entanglement , 2001, quant-ph/0107082.

[13]  Chris Heunen,et al.  Relative Frobenius algebras are groupoids , 2011, 1112.1284.

[14]  John C. Baez,et al.  Physics, Topology, Logic and Computation: A Rosetta Stone , 2009, 0903.0340.

[15]  Aaron D. Lauda FROBENIUS ALGEBRAS AND AMBIDEXTROUS ADJUNCTIONS , 2005 .

[16]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[17]  Dusko Pavlovic,et al.  Quantum and Classical Structures in Nondeterminstic Computation , 2008, QI.

[18]  S. Lane Categories for the Working Mathematician , 1971 .

[19]  J. Baez,et al.  Higher dimensional algebra and topological quantum field theory , 1995, q-alg/9503002.