A Redox-Active Bistable Molecular Switch Mounted inside a Metal-Organic Framework.

We describe the incorporation of a bistable mechanically interlocked molecule (MIM) into a robust Zr-based metal-organic framework (MOF), NU-1000, by employing a post-synthetic functionalization protocol. On average, close to two bistable [2]catenanes can be incorporated per repeating unit of the hexagonal channels of NU-1000. The reversible redox-switching of the bistable [2]catenanes is retained inside the MOF, as evidenced by solid-state UV-vis-NIR reflectance spectroscopy and cyclic voltammetry. This research demonstrates that bistable MIMs are capable of exhibiting robust dynamics inside the nanopores of a MOF.

[1]  D. D’Alessandro Exploiting redox activity in metal-organic frameworks: concepts, trends and perspectives. , 2016, Chemical communications.

[2]  Nicolaas A. Vermeulen,et al.  Scalable synthesis and post-modification of a mesoporous metal-organic framework called NU-1000 , 2015, Nature Protocols.

[3]  J. F. Stoddart,et al.  An Electrochromic Tristable Molecular Switch. , 2015, Journal of the American Chemical Society.

[4]  Sundus Erbas-Cakmak,et al.  Artificial Molecular Machines , 2015, Chemical reviews.

[5]  Mark Peplow,et al.  The tiniest Lego: a tale of nanoscale motors, rotors, switches and pumps , 2015, Nature.

[6]  Peyman Z. Moghadam,et al.  Electrochemically addressable trisradical rotaxanes organized within a metal–organic framework , 2015, Proceedings of the National Academy of Sciences.

[7]  Euan R Kay,et al.  Rise of the Molecular Machines , 2015, Angewandte Chemie.

[8]  Kelong Zhu,et al.  A molecular shuttle that operates inside a metal-organic framework. , 2015, Nature chemistry.

[9]  David A Leigh,et al.  Catenanes: Fifty Years of Molecular Links , 2015, Angewandte Chemie.

[10]  Ranjan V. Mannige,et al.  Heterogeneity of functional groups in a metal–organic framework displays magic number ratios , 2015, Proceedings of the National Academy of Sciences.

[11]  M. Wasielewski,et al.  Bias-Switchable Permselectivity and Redox Catalytic Activity of a Ferrocene-Functionalized, Thin-Film Metal-Organic Framework Compound. , 2015, The journal of physical chemistry letters.

[12]  Omar K Farha,et al.  Beyond post-synthesis modification: evolution of metal-organic frameworks via building block replacement. , 2014, Chemical Society reviews.

[13]  I. Aprahamian,et al.  Simple hydrazone building blocks for complicated functional materials. , 2014, Accounts of chemical research.

[14]  C. C. Epley,et al.  Solvothermal preparation of an electrocatalytic metalloporphyrin MOF thin film and its redox hopping charge-transfer mechanism. , 2014, Journal of the American Chemical Society.

[15]  R. Nolte,et al.  Functional interlocked systems. , 2014, Chemical Society reviews.

[16]  J. Fraser Stoddart,et al.  Metal-organic framework thin films composed of free-standing acicular nanorods exhibiting reversible electrochromism , 2013 .

[17]  J. F. Stoddart,et al.  A water-soluble pH-triggered molecular switch. , 2013, Journal of the American Chemical Society.

[18]  J. Hupp,et al.  Perfluoroalkane functionalization of NU-1000 via solvent-assisted ligand incorporation: synthesis and CO2 adsorption studies. , 2013, Journal of the American Chemical Society.

[19]  J. F. Stoddart,et al.  Ground-state kinetics of bistable redox-active donor-acceptor mechanically interlocked molecules. , 2012, Accounts of chemical research.

[20]  William R. Dichtel,et al.  High hopes: can molecular electronics realise its potential? , 2012, Chemical Society reviews.

[21]  A. M. Brouwer,et al.  Degenerate molecular shuttles with flexible and rigid spacers. , 2012, The Journal of organic chemistry.

[22]  Kristopher J Harris,et al.  Metal-organic frameworks with dynamic interlocked components. , 2012, Nature chemistry.

[23]  Kevin D. Haenni,et al.  A rotaxane-based switchable organocatalyst. , 2012, Angewandte Chemie.

[24]  Zongxi Li,et al.  Mesoporous silica nanoparticles in biomedical applications. , 2012, Chemical Society reviews.

[25]  M. Garcia‐Garibay,et al.  Crystalline molecular machines: function, phase order, dimensionality, and composition. , 2012, Chemical Society reviews.

[26]  J. F. Stoddart,et al.  Great expectations: can artificial molecular machines deliver on their promise? , 2012, Chemical Society reviews.

[27]  J. C. Barnes,et al.  Measurement of the ground-state distributions in bistable mechanically interlocked molecules using slow scan rate cyclic voltammetry , 2011, Proceedings of the National Academy of Sciences.

[28]  C. Knobler,et al.  A metal-organic framework replete with ordered donor-acceptor catenanes. , 2010, Chemical communications.

[29]  J. F. Stoddart,et al.  Molecular-mechanical switching at the nanoparticle-solvent interface: practice and theory. , 2010, Journal of the American Chemical Society.

[30]  J. F. Stoddart,et al.  Rigid-strut-containing crown ethers and [2]catenanes for incorporation into metal-organic frameworks. , 2009, Chemistry.

[31]  J. F. Stoddart,et al.  Docking in Metal-Organic Frameworks , 2009, Science.

[32]  J. F. Stoddart,et al.  The chemistry of the mechanical bond. , 2009, Chemical Society reviews.

[33]  E. Sykes,et al.  Molecular rotors and motors: recent advances and future challenges. , 2009, ACS nano.

[34]  Miguel A. Garcia-Garibay,et al.  Amphidynamic character of crystalline MOF-5: rotational dynamics of terephthalate phenylenes in a free-volume, sterically unhindered environment. , 2008, Journal of the American Chemical Society.

[35]  J. F. Stoddart,et al.  Dynamic donor–acceptor [2]catenanes , 2007, Proceedings of the National Academy of Sciences.

[36]  Ben L Feringa,et al.  The art of building small: from molecular switches to molecular motors. , 2007, The Journal of organic chemistry.

[37]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.

[38]  M. Garcia‐Garibay,et al.  Crystalline molecular machines: a quest toward solid-state dynamics and function. , 2006, Accounts of chemical research.

[39]  Belén Ferrer,et al.  Autonomous artificial nanomotor powered by sunlight , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Hsian-Rong Tseng,et al.  Structural evidence of mechanical shuttling in condensed monolayers of bistable rotaxane molecules. , 2005, Angewandte Chemie.

[41]  Francesco Zerbetto,et al.  Macroscopic transport by synthetic molecular machines , 2005, Nature materials.

[42]  Xiang Zhang,et al.  The metastability of an electrochemically controlled nanoscale machine on gold surfaces. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[43]  Hsian-Rong Tseng,et al.  Toward chemically controlled nanoscale molecular machinery. , 2003, Angewandte Chemie.

[44]  J. F. Stoddart,et al.  A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .

[45]  Jean-Pierre Sauvage,et al.  Transition Metal-Containing Rotaxanes and Catenanes in Motion: Toward Molecular Machines and Motors , 1998 .

[46]  Vincenzo Balzani,et al.  A Chemically and Electrochemically Switchable [2]Catenane Incorporating a Tetrathiafulvalene Unit. , 1998, Angewandte Chemie.

[47]  J. F. Stoddart,et al.  Interlocked and Intertwined Structures and Superstructures , 1996 .

[48]  Jean-Pierre Sauvage,et al.  Electrochemically Triggered Swinging of a [2]-Catenate. , 1994, Journal of the American Chemical Society.

[49]  J Fraser Stoddart,et al.  A molecular shuttle. , 1991, Journal of the American Chemical Society.

[50]  Jean-Pierre Sauvage,et al.  Interlocking of molecular threads: from the statistical approach to the templated synthesis of catenands , 1987 .

[51]  Alberto Credi,et al.  Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. , 2015, Nature nanotechnology.

[52]  Douglas C. Friedman,et al.  Radically enhanced molecular recognition. , 2010, Nature chemistry.

[53]  James A. Wisner,et al.  [2]Rotaxane molecular shuttles employing 1,2-bis(pyridinium)ethane binding sites and dibenzo-24-crown-8 ethers , 2000 .

[54]  J. F. Stoddart,et al.  A chemically and electrochemically switchable molecular shuttle , 1994, Nature.