On energy ground states among crystal lattice structures with prescribed bonds

We consider pairwise interaction energies and we investigate their minimizers among lattices with prescribed minimal vectors (length and coordination number), i.e. the one corresponding to the crystal’s bonds. In particular, we show the universal minimality—i.e. the optimality for all completely monotone interaction potentials—of strongly eutactic lattices among these structures. This gives new optimality results for the square, triangular, simple cubic (sc), face-centred-cubic (fcc) and body-centred-cubic (bcc) lattices in dimensions 2 and 3 when points are interacting through completely monotone potentials. We also show the universal maximality of the triangular and fcc lattices among all lattices with prescribed bonds. Furthermore, we apply our results to Lennard-Jones type potentials, showing the minimality of any universal minimizer (resp. maximizer) for small (resp. large) bond lengths, where the ranges of optimality are easily computable. Finally, a numerical investigation is presented where a phase transition of type ‘square–rhombic–triangular’ (resp. ‘sc-rhombic-bcc-rhombic-fcc’) in dimension d = 2 (resp. d = 3) among lattices with more than 4 (resp. 6) bonds is observed.

[1]  I. J. Schoenberg Metric spaces and completely monotone functions , 1938 .

[2]  Harmonic Analysis on Symmetric Spaces and Applications II (Audrey Terras) , 1987 .

[3]  Local optimality of cubic lattices for interaction energies , 2016 .

[4]  P. H. Diananda Notes on two lemmas concerning the Epstein zeta-function , 1964, Proceedings of the Glasgow Mathematical Association.

[5]  Xiaofeng Ren,et al.  Nonhexagonal Lattices From a Two Species Interacting System , 2020, SIAM J. Math. Anal..

[6]  G. Mie Zur kinetischen Theorie der einatomigen Körper , 1903 .

[7]  Markus Faulhuber,et al.  Maximal Theta Functions -- Universal Optimality of the Hexagonal Lattice for Madelung-Like Lattice Energies , 2020, 2007.15977.

[8]  Two-dimensional Wigner crystals of classical Lennard-Jones particles , 2019, Journal of Physics A: Mathematical and Theoretical.

[9]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .

[10]  Henry Cohn,et al.  Universal optimality of the $E_8$ and Leech lattices and interpolation formulas , 2019, Annals of Mathematics.

[11]  Brian Simanek,et al.  Periodic discrete energy for long-range potentials , 2014, 1403.7505.

[12]  Giovanni Vignale,et al.  Quantum Theory of the Electron Liquid , 2005 .

[13]  E. Mainini,et al.  Crystallization in Carbon Nanostructures , 2014 .

[14]  Renaud Coulangeon,et al.  Spherical designs and zeta functions of lattices , 2006 .

[15]  Robert A. Rankin,et al.  A Minimum Problem for the Epstein Zeta-Function , 1953, Proceedings of the Glasgow Mathematical Association.

[16]  N. Dolbilin Delone Sets: Local Identity and Global Symmetry , 2015, 1608.06842.

[17]  S. Bernstein,et al.  Sur les fonctions absolument monotones , 1929 .

[18]  Janet E. Jones On the determination of molecular fields. III.—From crystal measurements and kinetic theory data , 1924 .

[19]  Laurent B'etermin,et al.  Dimension reduction techniques for the minimization of theta functions on lattices , 2016, 1607.08716.

[20]  Hugh L. Montgomery,et al.  Minimal theta functions , 1988, Glasgow Mathematical Journal.

[21]  S. Serfaty,et al.  Crystallization for Coulomb and Riesz interactions as a consequence of the Cohn-Kumar conjecture , 2019, Proceedings of the American Mathematical Society.

[22]  Janet E. Jones On the determination of molecular fields. —II. From the equation of state of a gas , 1924 .

[23]  On the Crystallization of 2D Hexagonal Lattices , 2009 .

[24]  E. Kaxiras Atomic and electronic structure of solids , 2003 .

[25]  P. Gruber Application of an idea of Voronoĭ to lattice zeta functions , 2012, Proceedings of the Steklov Institute of Mathematics.

[26]  Ilya G. Kaplan,et al.  Intermolecular interactions : physical picture, computational methods, model potentials , 2006 .

[27]  Laurent Bétermin,et al.  Two-Dimensional Theta Functions and Crystallization among Bravais Lattices , 2016, SIAM J. Math. Anal..

[28]  T. Ho,et al.  Two-component Bose-Einstein condensates with a large number of vortices. , 2002, Physical review letters.

[29]  K. Fields Locally minimal Epstein zeta functions , 1980 .

[30]  F. Theil A Proof of Crystallization in Two Dimensions , 2006 .

[31]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[32]  Xinfu Chen,et al.  An Application of the Modular Function in Nonlocal Variational Problems , 2007 .

[33]  On minima of sum of theta functions and Mueller-Ho Conjecture , 2020, 2004.13882.

[34]  Sylvia Serfaty,et al.  From the Ginzburg-Landau Model to Vortex Lattice Problems , 2010, 1011.4617.

[35]  Florian Pfender,et al.  Kissing numbers, sphere packings, and some unexpected proofs , 2004 .

[36]  H. Knupfer,et al.  On the optimality of the rock-salt structure among lattices with charge distributions , 2020, Mathematical Models and Methods in Applied Sciences.

[37]  R. Leighton,et al.  Feynman Lectures on Physics , 1971 .

[38]  Charles Radin,et al.  The ground state for sticky disks , 1980 .

[39]  Mircea Petrache,et al.  Crystallization to the Square Lattice for a Two-Body Potential , 2019, Archive for Rational Mechanics and Analysis.

[40]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..

[41]  Renaud Coulangeon,et al.  Energy Minimization, Periodic Sets and Spherical Designs , 2010, 1005.4373.

[42]  Henry Cohn,et al.  Universally optimal distribution of points on spheres , 2006, math/0607446.

[43]  Lucia De Luca,et al.  Crystallization in Two Dimensions and a Discrete Gauss–Bonnet Theorem , 2016, J. Nonlinear Sci..

[44]  Spherical designs and heights of Euclidean lattices , 2014, 1401.2891.

[45]  Veikko Ennola,et al.  On a problem about the Epstein zeta-function , 1964, Mathematical Proceedings of the Cambridge Philosophical Society.

[46]  Laurent Bétermin Minimizing lattice structures for Morse potential energy in two and three dimensions , 2019, Journal of Mathematical Physics.

[47]  Mircea Petrache,et al.  Optimal and non-optimal lattices for non-completely monotone interaction potentials , 2018, Analysis and Mathematical Physics.

[48]  J. W. S. Cassels,et al.  On a problem of Rankin about the Epstein zeta-function , 1959, Proceedings of the Glasgow Mathematical Association.

[49]  Florian Theil,et al.  Face-Centered Cubic Crystallization of Atomistic Configurations , 2014, 1407.0692.

[50]  M. Saito,et al.  Energy Minimization , 2020, Computer Vision.

[51]  Veikko Ennola,et al.  A lemma about the Epstein zeta-function , 1964, Proceedings of the Glasgow Mathematical Association.

[52]  Salvatore Torquato,et al.  Self-assembly of the simple cubic lattice with an isotropic potential. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  Laurent B'etermin,et al.  Lattice ground states for embedded-atom models in 2D and 3D , 2021, Letters in Mathematical Physics.

[54]  Laurent Bétermin,et al.  Effect of Periodic Arrays of Defects on Lattice Energy Minimizers , 2020, Annales Henri Poincaré.

[55]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[56]  S. Bochner Monotone Funktionen, Stieltjessche Integrale und harmonische Analyse , 1933 .

[57]  Local variational study of 2d lattice energies and application to Lennard–Jones type interactions , 2016, 1611.07820.

[58]  Laurent B'etermin Minimal Soft Lattice Theta Functions , 2018, Constructive Approximation.

[59]  Mathieu Lewin,et al.  The Crystallization Conjecture: A Review , 2015, 1504.01153.

[60]  Peter Sarnak,et al.  Minima of Epstein’s Zeta function and heights of flat tori , 2006 .

[61]  R. Ashing Stable , 2020, Definitions.