Oxatub[4]arene: a smart macrocyclic receptor with multiple interconvertible cavities† †Electronic supplementary information (ESI) available: Experimental conditions and procedures, syntheses and compound characterizations, 1H, 13C and 2D NMR spectroscopic analyses, mass spectra, ITC titration data a

We report a smart macrocycle with four interconvertible cavities, which can select the best-fit cavity for a given guest.

[1]  K. Rissanen,et al.  Bis-urea macrocycles with a deep cavity. , 2015, Chemical communications.

[2]  Yanli Zhao,et al.  Biomedical Applications of Supramolecular Systems Based on Host-Guest Interactions. , 2015, Chemical reviews.

[3]  Euan R Kay,et al.  Rise of the Molecular Machines , 2015, Angewandte Chemie.

[4]  Liang Zhao,et al.  Synthesis and Molecular Recognition of Water-Soluble S6-Corona[3]arene[3]pyridazines. , 2015, Angewandte Chemie.

[5]  H. Deng,et al.  Molecular binding behavior of bipyridium derivatives by water-soluble carboxylato-biphen[3]arene. , 2015, Chemical communications.

[6]  Zhan-Ting Li,et al.  Hydrazide macrocycles as effective transmembrane channels for ammonium. , 2015, Chemical communications.

[7]  Feihe Huang,et al.  A water-soluble biphen[3]arene: synthesis, host-guest complexation, and application in controllable self-assembly and controlled release. , 2015, Chemical communications.

[8]  Wei Jiang,et al.  Imine macrocycle with a deep cavity: guest-selected formation of syn/anti configuration and guest-controlled reconfiguration. , 2015, Chemistry.

[9]  C. Gaeta,et al.  Calix[6]arene threading with weakly interacting tertiary ammonium axles: generation of chiral pseudorotaxane architectures. , 2015, Organic letters.

[10]  Sijbren Otto,et al.  Supramolecular systems chemistry. , 2015, Nature nanotechnology.

[11]  V. Šindelář,et al.  A bambusuril macrocycle that binds anions in water with high affinity and selectivity. , 2015, Angewandte Chemie.

[12]  Liang Zhao,et al.  Synthesis, structure, and properties of O6 -Corona[3]arene[3]tetrazines. , 2014, Angewandte Chemie.

[13]  A. Hamilton,et al.  Ion-mediated conformational switches , 2014, Chemical science.

[14]  Severin T. Schneebeli,et al.  Assembly of supramolecular nanotubes from molecular triangles and 1,2-dihalohydrocarbons. , 2014, Journal of the American Chemical Society.

[15]  Chunju Li,et al.  Pillararene-based supramolecular polymers: from molecular recognition to polymeric aggregates. , 2014, Chemical communications.

[16]  Yan‐Song Zheng,et al.  Synthesis of tetraphenylethylene pillar[6]arenes and the selective fast quenching of their AIE fluorescence by TNT. , 2014, Chemical communications.

[17]  Severin T. Schneebeli,et al.  Functionalizing pillar[n]arenes. , 2014, Accounts of chemical research.

[18]  C. Schalley,et al.  Exploring macrocycles in functional supramolecular gels: from stimuli responsiveness to systems chemistry. , 2014, Accounts of chemical research.

[19]  Bo Zheng,et al.  Supramolecular polymers constructed from macrocycle-based host-guest molecular recognition motifs. , 2014, Accounts of chemical research.

[20]  H. Tian,et al.  Stimuli-responsive supramolecular polymers in aqueous solution. , 2014, Accounts of chemical research.

[21]  H. Meier,et al.  Pillar[n]arenes—a Novel, Highly Promising Class of Macrocyclic Host Molecules , 2014 .

[22]  Yanli Zhao,et al.  Pillararene-based assemblies: design principle, preparation and applications. , 2013, Chemistry.

[23]  Severin T. Schneebeli,et al.  Electron sharing and anion-π recognition in molecular triangular prisms. , 2013, Angewandte Chemie.

[24]  Hongjun Zhou,et al.  Highly selective fluorescent recognition of sulfate in water by two rigid tetrakisimidazolium macrocycles with peripheral chains. , 2013, Journal of the American Chemical Society.

[25]  Nicolaas A. Vermeulen,et al.  Ex(2)Box: interdependent modes of binding in a two-nanometer-long synthetic receptor. , 2013, Journal of the American Chemical Society.

[26]  A. Flood,et al.  A pentagonal cyanostar macrocycle with cyanostilbene CH donors binds anions and forms dialkylphosphate [3]rotaxanes. , 2013, Nature chemistry.

[27]  C. Schalley,et al.  Pseudorotaxanes with self-sorted sequence and stereochemical orientation. , 2013, Angewandte Chemie.

[28]  Piotr Nowak,et al.  Dynamic combinatorial libraries: from exploring molecular recognition to systems chemistry. , 2013, Journal of the American Chemical Society.

[29]  A. Lützen,et al.  Artificial allosteric receptors. , 2013, Chemistry.

[30]  T. Ogoshi,et al.  Pillararenes: Versatile Synthetic Receptors for Supramolecular Chemistry , 2013 .

[31]  Young Chun,et al.  Calix[n]imidazolium as a new class of positively charged homo-calix compounds , 2013, Nature Communications.

[32]  D. Dougherty The cation-π interaction. , 2013, Accounts of chemical research.

[33]  J. C. Barnes,et al.  ExBox: a polycyclic aromatic hydrocarbon scavenger. , 2013, Journal of the American Chemical Society.

[34]  J. Sanders,et al.  Evolution of dynamic combinatorial chemistry. , 2012, Accounts of chemical research.

[35]  Yu Liu,et al.  Calixarene-based supramolecular polymerization in solution. , 2012, Chemical Society reviews.

[36]  Louise N. Dawe,et al.  Synthesis of functionalized acenaphthenes and a new class of homooxacalixarenes. , 2012, Organic letters.

[37]  J. Sessler,et al.  The "Texas-sized" molecular box: a versatile building block for the construction of anion-directed mechanically interlocked structures. , 2012, Accounts of chemical research.

[38]  Yong Yang,et al.  Pillararenes, a new class of macrocycles for supramolecular chemistry. , 2012, Accounts of chemical research.

[39]  Mei‐Xiang Wang Nitrogen and oxygen bridged calixaromatics: synthesis, structure, functionalization, and molecular recognition. , 2012, Accounts of chemical research.

[40]  Bo Zheng,et al.  Supramolecular polymers constructed by crown ether-based molecular recognition. , 2012, Chemical Society reviews.

[41]  P. Cragg,et al.  Fifty years of oxacalix[3]arenes: A review , 2012, Beilstein journal of organic chemistry.

[42]  T. Glass,et al.  Molecular tubes for lipid sensing: tube conformations control analyte selectivity and fluorescent response. , 2012, The Journal of organic chemistry.

[43]  K. Sharma,et al.  Pillar[5]arenes: fascinating cyclophanes with a bright future. , 2012, Chemical Society reviews.

[44]  Zhi Ma,et al.  Formation of linear supramolecular polymers that is driven by C-H⋅⋅⋅π interactions in solution and in the solid state. , 2011, Angewandte Chemie.

[45]  Chuan-feng Chen Novel triptycene-derived hosts: synthesis and their applications in supramolecular chemistry. , 2011, Chemical communications.

[46]  Jonathan L. Sessler,et al.  A 'Texas-sized' molecular box that forms an anion-induced supramolecular necklace. , 2010, Nature chemistry.

[47]  J. Švec,et al.  Bambus[6]uril. , 2010, Angewandte Chemie.

[48]  Jonathan R. Nitschke,et al.  Systems chemistry: Molecular networks come of age , 2009, Nature.

[49]  Meining Wang Heterocalixaromatics, new generation macrocyclic host molecules in supramolecular chemistry. , 2008, Chemical communications.

[50]  P. Georghiou,et al.  Synthesis of “calixarene-like” N,N-ditosyldiaza[3.3](1,4)naphthalenophanes , 2008 .

[51]  Yoshiaki Nakamoto,et al.  para-Bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host-guest property. , 2008, Journal of the American Chemical Society.

[52]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[53]  Jean-Marie Lehn,et al.  From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. , 2007, Chemical Society reviews.

[54]  P. Corbett,et al.  Dynamic combinatorial chemistry. , 2006, Chemical reviews.

[55]  David O. Miller,et al.  Calixnaphthalenes: Deep, electron-rich naphthalene ring-containing calixarenes. The first decade , 2005 .

[56]  David O. Miller,et al.  Synthesis and complexation properties of "zorbarene": a new naphthalene ring-based molecular receptor. , 2005, The Journal of organic chemistry.

[57]  T. Glass,et al.  Shape-selective sensing of lipids in aqueous solution by a designed fluorescent molecular tube. , 2004, Journal of the American Chemical Society.

[58]  R. K. Castellano Progress Toward Understanding the Nature and Function of C-H...O Interactions , 2004 .

[59]  Stoddart,et al.  Artificial Molecular Machines. , 2000, Angewandte Chemie.

[60]  Jean-Marie Lehn,et al.  Dynamic Combinatorial Chemistry and Virtual Combinatorial Libraries , 1999 .

[61]  Atsushi Ikeda,et al.  Novel Cavity Design Using Calix[n]arene Skeletons: Toward Molecular Recognition and Metal Binding. , 1997, Chemical reviews.

[62]  V. Böhmer Calixarenes, Macrocycles with (Almost) Unlimited Possibilities , 1995 .

[63]  W. Vogt,et al.  Dissymmetric calix[4]arenes with C4- and C2-symmetry. Synthesis, x-ray structures, conformational fixation, and proton NMR spectroscopic studies , 1993 .

[64]  Zhao-peng Li,et al.  Calix[4]naphthalenes: Cyclic tetramers of 1-naphthol and formaldehyde , 1993 .

[65]  D. Koshland Application of a Theory of Enzyme Specificity to Protein Synthesis. , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Klaus Schulten,et al.  Supporting Information Macromolecular Crystallography for Synthetic Abiological Molecules : Combining xMDFF and PHENIX for Structure Determination of Cyanostar Macrocycles , 2015 .

[67]  Jean-Marie Lehn,et al.  Supramolecular Chemistry: Concepts And Perspectives , 2014 .

[68]  M. Nishio The Ch/π Interaction: Evidence, Nature, and Consequences , 1998 .

[69]  B. Poh,et al.  A water-soluble cyclic tetramer from reacting chromotropic acid with formaldehyde , 1989 .