Automatic S-Wave Picker for Local Earthquake Tomography

High-resolution seismic tomography at local and regional scales requires large and consistent sets of arrival-time data. Algorithms combining accurate pick- ing with an automated quality classification can be used for repicking waveforms and compiling large arrival-time data sets suitable for tomographic inversion. S-wave velocities represent a key parameter for petrological interpretation, improved hypocenter determination, as well as for seismic hazard models. In our approach, we combine three commonly used phase detection and picking methods in a robust S-wave picking procedure. Information from the different techniques provides an in situ estimate of timing uncertainty and of the reliability of the automatic phase identification. Automatic picks are compared against manually picked reference picks of selected earthquakes in the Alpine region. The average accuracy of automatic picks and their classification is comparable with the reference picks, although a higher number of picks is downgraded to lower quality classes by the automatic picker. In the production-mode, we apply the picker to a data set of 552 earthquakes in the Alps recorded at epicentral distances ≤150 km. The resulting data set includes about 2500 S phases with an upper error bound of 0.27 sec. Online Material: Details on the proposed automatic S-wave picking algorithm.

[1]  E. A. Flinn Signal analysis using rectilinearity and direction of particle motion , 1965 .

[2]  D. Giardini,et al.  Automatic seismic phase picking and consistent observation error assessment: application to the Italian seismicity , 2006 .

[3]  Bing Zhou,et al.  An analytical treatment of single station triaxial seismic direction finding , 2005 .

[4]  Clifford H. Thurber,et al.  Automatic P-Wave Arrival Detection and Picking with Multiscale Wavelet Analysis for Single-Component Recordings , 2003 .

[5]  Tobias Diehl,et al.  Consistent phase picking for regional tomography models: application to the greater Alpine region , 2009 .

[6]  Ernest R. Kanasewich,et al.  Enhancement of Teleseismic Body Phases with a Polarization Filter , 1970 .

[7]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[8]  M. Leonard,et al.  Multi-component autoregressive techniques for the analysis of seismograms , 1999 .

[9]  Walter H. F. Smith,et al.  New version of the generic mapping tools , 1995 .

[10]  Edi Kissling,et al.  Geotomography with local earthquake data , 1988 .

[11]  Joan S. Gomberg,et al.  The effect of S-wave arrival times on the accuracy of hypocenter estimation , 1990, Bulletin of the Seismological Society of America.

[12]  A Cichowicz,et al.  An automatic S-phase picker , 1993, Bulletin of the Seismological Society of America.

[13]  D. Seidl,et al.  Interactive high-resolution polarization analysis of broad-band seismograms , 1986 .

[14]  E. S. Husebye,et al.  A new three-component detector and automatic single-station bulletin production , 1992 .

[15]  Manfred Baer,et al.  An automatic phase picker for local and teleseismic events , 1987 .

[16]  Brian L. N. Kennett,et al.  Automatic Phase-Detection and Identification by Full Use of a Single Three-Component Broadband Seismogram , 2000 .

[17]  Brian L. N. Kennett,et al.  Phase identification and attribute analysis of broadband seismograms at far-regional distances , 2001 .

[18]  Hansruedi Maurer,et al.  Hypocentral Parameters and Velocity Estimation in the Western Swiss Alps by Simultaneous Inversion of P- and S-Wave Data , 1996 .

[19]  E. Kissling,et al.  Accurate hypocentre determination in the seismogenic zone of the subducting Nazca Plate in northern Chile using a combined on-/offshore network , 1999 .

[20]  E. R. Engdahl,et al.  The interpretation of the Wadati diagram with relaxed assumptions , 1973 .

[21]  Jin Wang,et al.  Identification and picking of S phase using an artificial neural network , 1997, Bulletin of the Seismological Society of America.

[22]  J. C. Samson,et al.  Matrix and Stokes vector representations of detectors for polarized waveforms: theory, with some applications to teleseismic waves , 1977 .

[23]  R. V. Allen,et al.  Automatic phase pickers: Their present use and future prospects , 1982 .

[24]  Genshiro Kitagawa,et al.  Estimation of the arrival times of seismic waves by multivariate time series model , 1991 .

[25]  Takashi AKAZAWA,et al.  A TECHNIQUE FOR AUTOMATIC DETECTION OF ONSET TIME OF P-AND S-PHASES IN STRONG MOTION RECORDS , 2002 .

[26]  Genshiro Kitagawa,et al.  Multivariate time-series model to estimate the arrival times of S-waves , 1993 .

[27]  Genshiro Kitagawa,et al.  A NEW EFFICIENT PROCEDURE FOR THE ESTIMATION OF ONSET TIMES OF SEISMIC WAVES , 1988 .

[28]  Jon Berger,et al.  Seismic Detectors: The State-of-the-Art , 1981 .

[29]  John E. Vidale,et al.  Complex polarization analysis of particle motion , 1986 .

[30]  W. STEVEN,et al.  The seismic velocity structure of the deep continental crust , 2006 .

[31]  N. Christensen Poisson's ratio and crustal seismology , 1996 .

[32]  Genshiro Kitagawa,et al.  A procedure for the modeling of non-stationary time series , 1978 .

[33]  Reinoud Sleeman,et al.  Robust automatic P-phase picking: an on-line implementation in the analysis of broadband seismogram recordings , 1999 .

[34]  Pierre Vacher,et al.  Shallow mantle temperatures under Europe from P and S wave tomography , 2000 .

[35]  Klaus Stammler,et al.  SeismicHandler: programmable multichannel data handler for interactive and automatic processing of seismological analyses , 1993 .

[36]  R. V. Allen,et al.  Automatic earthquake recognition and timing from single traces , 1978, Bulletin of the Seismological Society of America.