Evaluation of Carbapenemase Screening and Confirmation Tests with Enterobacteriaceae and Development of a Practical Diagnostic Algorithm

ABSTRACT Reliable identification of carbapenemase-producing members of the family Enterobacteriaceae is necessary to limit their spread. This study aimed to develop a diagnostic flow chart using phenotypic screening and confirmation tests that is suitable for implementation in different types of clinical laboratories. A total of 334 clinical Enterobacteriaceae isolates genetically characterized with respect to carbapenemase, extended-spectrum β-lactamase (ESBL), and AmpC genes were analyzed. A total of 142/334 isolates (42.2%) were suspected of carbapenemase production, i.e., intermediate or resistant to ertapenem (ETP) and/or meropenem (MEM) and/or imipenem (IPM) according to EUCAST clinical breakpoints (CBPs). A group of 193/334 isolates (57.8%) showing susceptibility to ETP, MEM, and IPM was considered the negative-control group in this study. CLSI and EUCAST carbapenem CBPs and the new EUCAST MEM screening cutoff were evaluated as screening parameters. ETP, MEM, and IPM with or without aminophenylboronic acid (APBA) or EDTA combined-disk tests (CDTs) and the Carba NP-II test were evaluated as confirmation assays. EUCAST temocillin cutoffs were evaluated for OXA-48 detection. The EUCAST MEM screening cutoff (<25 mm) showed a sensitivity of 100%. The ETP APBA CDT on Mueller-Hinton agar containing cloxacillin (MH-CLX) displayed 100% sensitivity and specificity for class A carbapenemase confirmation. ETP and MEM EDTA CDTs showed 100% sensitivity and specificity for class B carbapenemases. Temocillin zone diameters/MIC testing on MH-CLX was highly specific for OXA-48 producers. The overall sensitivity, specificity, positive predictive value, and negative predictive value of the Carba NP-II test were 78.9, 100, 100, and 98.7%, respectively. Combining the EUCAST MEM carbapenemase screening cutoff (<25 mm), ETP (or MEM), APBA, and EDTA CDTs, and temocillin disk diffusion on MH-CLX promises excellent performance for carbapenemase detection.

[1]  P. Nordmann,et al.  OXA-48-like carbapenemases: the phantom menace. , 2012, The Journal of antimicrobial chemotherapy.

[2]  P. Nordmann,et al.  Evaluation of a DNA microarray for the rapid detection of extended-spectrum β-lactamases (TEM, SHV and CTX-M), plasmid-mediated cephalosporinases (CMY-2-like, DHA, FOX, ACC-1, ACT/MIR and CMY-1-like/MOX) and carbapenemases (KPC, OXA-48, VIM, IMP and NDM). , 2012, The Journal of antimicrobial chemotherapy.

[3]  H. Mammeri,et al.  Emergence of Ertapenem Resistance in an Escherichia coli Clinical Isolate Producing Extended-Spectrum β-Lactamase AmpC , 2011, Antimicrobial Agents and Chemotherapy.

[4]  Clinical,et al.  Performance Standards for Antimicrobial Susceptibility Testing; Eighteenth Informational Supplement , 2008 .

[5]  Paige E. Waterman,et al.  Rapid and Simultaneous Detection of bla KPC and bla NDM by Use of Multiplex Real-Time PCR , 2013, Journal of Clinical Microbiology.

[6]  Robin Patel,et al.  Comparison of a Novel, Rapid Chromogenic Biochemical Assay, the Carba NP Test, with the Modified Hodge Test for Detection of Carbapenemase-Producing Gram-Negative Bacilli , 2013, Journal of Clinical Microbiology.

[7]  P. Nordmann,et al.  Further Proofs of Concept for the Carba NP Test , 2014, Antimicrobial Agents and Chemotherapy.

[8]  I. Autenrieth,et al.  Evaluation of phenotypic detection methods for metallo-β-lactamases (MBLs) in clinical isolates of Pseudomonas aeruginosa , 2014, European Journal of Clinical Microbiology & Infectious Diseases.

[9]  N. Woodford,et al.  Evaluation of three selective chromogenic media, CHROMagar ESBL, CHROMagar CTX-M and CHROMagar KPC, for the detection of Klebsiella pneumoniae producing OXA-48 carbapenemase , 2013, Journal of Clinical Pathology.

[10]  J. Kop,et al.  Detection of Colonization by Carbapenemase-Producing Gram-Negative Bacilli in Patients by Use of the Xpert MDRO Assay , 2013, Journal of Clinical Microbiology.

[11]  P. Nordmann,et al.  Diversity, Epidemiology, and Genetics of Class D β-Lactamases , 2009, Antimicrobial Agents and Chemotherapy.

[12]  G. Peirano,et al.  Laboratory Detection of Enterobacteriaceae That Produce Carbapenemases , 2012, Journal of Clinical Microbiology.

[13]  U. Pennsylvania,et al.  Clinical and Laboratory Standards Institute , 2019, Springer Reference Medizin.

[14]  K. Bush,et al.  The ABCD’s of β-lactamase nomenclature , 2013, Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy.

[15]  J. Verhaegen,et al.  Towards a phenotypic screening strategy for emerging β-lactamases in Gram-negative bacilli. , 2013, International journal of antimicrobial agents.

[16]  C. Taitt,et al.  Multidrug resistance determinants from NDM-1-producing Klebsiella pneumoniae in the USA. , 2012, International journal of antimicrobial agents.

[17]  George A. Jacoby,et al.  AmpC β-Lactamases , 2009, Clinical Microbiology Reviews.

[18]  G. Bloemberg,et al.  Evaluation of a diagnostic flow chart for detection and confirmation of extended spectrum β-lactamases (ESBL) in Enterobacteriaceae. , 2012, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[19]  Samir N. Patel,et al.  Comparative Evaluation of a Chromogenic Agar Medium, the Modified Hodge Test, and a Battery of Meropenem-Inhibitor Discs for Detection of Carbapenemase Activity in Enterobacteriaceae , 2011, Journal of Clinical Microbiology.

[20]  P. Nordmann,et al.  Impact of the isolation medium for detection of carbapenemase-producing Enterobacteriaceae using an updated version of the Carba NP test. , 2014, Journal of medical microbiology.

[21]  P. Nordmann,et al.  Contribution of extended-spectrum AmpC (ESAC) beta-lactamases to carbapenem resistance in Escherichia coli. , 2008, FEMS microbiology letters.

[22]  P. Nordmann,et al.  Rapid Identification of Carbapenemase Types in Enterobacteriaceae and Pseudomonas spp. by Using a Biochemical Test , 2012, Antimicrobial Agents and Chemotherapy.

[23]  N. Woodford,et al.  A sensitive and specific phenotypic assay for detection of metallo-β-lactamases and KPC in Klebsiella pneumoniae with the use of meropenem disks supplemented with aminophenylboronic acid, dipicolinic acid and cloxacillin. , 2011, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[24]  P. Nordmann,et al.  Comparison of the SUPERCARBA, CHROMagar KPC, and Brilliance CRE screening media for detection of Enterobacteriaceae with reduced susceptibility to carbapenems. , 2013, Diagnostic microbiology and infectious disease.

[25]  S. Pournaras,et al.  A simple phenotypic method for the differentiation of metallo-beta-lactamases and class A KPC carbapenemases in Enterobacteriaceae clinical isolates. , 2010, The Journal of antimicrobial chemotherapy.

[26]  M. Barbier,et al.  OmpK26, a Novel Porin Associated with Carbapenem Resistance in Klebsiella pneumoniae , 2011, Antimicrobial Agents and Chemotherapy.

[27]  Vincent H Tam,et al.  Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): an emerging cause of multidrug-resistant infection. , 2010, The Journal of antimicrobial chemotherapy.

[28]  M. Ferraro Performance standards for antimicrobial susceptibility testing , 2001 .

[29]  W. Dunne,et al.  Detection of Klebsiella pneumoniae Carbapenemase (KPC) Production in Non-Klebsiella pneumoniae Enterobacteriaceae Isolates by Use of the Phoenix, Vitek 2, and Disk Diffusion Methods , 2011, Journal of Clinical Microbiology.

[30]  R. Zbinden,et al.  Detection of AmpC Beta-Lactamase in Escherichia coli: Comparison of Three Phenotypic Confirmation Assays and Genetic Analysis , 2011, Journal of Clinical Microbiology.

[31]  N. Woodford,et al.  Molecular mechanisms disrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter spp. clinical isolates from the UK. , 2009, The Journal of antimicrobial chemotherapy.

[32]  N. Woodford,et al.  In vivo development of ertapenem resistance in a patient with pneumonia caused by Klebsiella pneumoniae with an extended-spectrum beta-lactamase. , 2006, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[33]  G. Bloemberg,et al.  Practical Approach for Reliable Detection of AmpC Beta-Lactamase-Producing Enterobacteriaceae , 2011, Journal of Clinical Microbiology.

[34]  P. Apfalter,et al.  Temocillin and meropenem to discriminate resistance mechanisms leading to decreased carbapenem susceptibility with focus on OXA-48 in Enterobacteriaceae. , 2013, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[35]  P. Nordmann,et al.  Intercontinental spread of OXA-48 beta-lactamase-producing Enterobacteriaceae over a 11-year period, 2001 to 2011. , 2013, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[36]  G. Zambardi,et al.  Performance of chromID® CARBA medium for carbapenemases-producing enterobacteriaceae detection during rectal screening , 2013, European Journal of Clinical Microbiology & Infectious Diseases.

[37]  A. Fluit,et al.  A disc diffusion assay for detection of class A, B and OXA-48 carbapenemases in Enterobacteriaceae using phenyl boronic acid, dipicolinic acid and temocillin. , 2014, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[38]  Samir N. Patel,et al.  Evaluation of the Carba NP Test for Rapid Detection of Carbapenemase-Producing Enterobacteriaceae and Pseudomonas aeruginosa , 2013, Antimicrobial Agents and Chemotherapy.

[39]  K. Bush,et al.  Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from gram-negative bacteria. , 2011, Annual review of microbiology.

[40]  A. Corso,et al.  Sensitive Screening Tests for Suspected Class A Carbapenemase Production in Species of Enterobacteriaceae , 2009, Journal of Clinical Microbiology.

[41]  S. Lasocki,et al.  Emergence of carbapenem-resistant Hafnia: the fall of the last soldier. , 2010, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[42]  D. Piérard,et al.  Comparison of the Carba NP test with the Rapid CARB Screen Kit for the detection of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa , 2014, European Journal of Clinical Microbiology & Infectious Diseases.

[43]  S. Pournaras,et al.  Inhibitor-based methods for the detection of KPC carbapenemase-producing Enterobacteriaceae in clinical practice by using boronic acid compounds. , 2010, The Journal of antimicrobial chemotherapy.

[44]  V. Miriagou,et al.  Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. , 2012, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[45]  G. Bloemberg,et al.  Evaluation of the AID ESBL line probe assay for rapid detection of extended-spectrum β-lactamase (ESBL) and KPC carbapenemase genes in Enterobacteriaceae. , 2014, The Journal of antimicrobial chemotherapy.

[46]  Te‐Li Chen,et al.  Impact of Derepressed AmpC β-Lactamase ACT-9 on the Clinical Efficacy of Ertapenem , 2011, Antimicrobial Agents and Chemotherapy.

[47]  Samir N. Patel,et al.  Reply to “Further Proofs of Concept for the Carba NP Test” , 2014, Antimicrobial Agents and Chemotherapy.

[48]  F. Fernández-Cuenca,et al.  In vivo selection of Enterobacter aerogenes with reduced susceptibility to cefepime and carbapenems associated with decreased expression of a 40 kDa outer membrane protein and hyperproduction of AmpC beta-lactamase. , 2006, International journal of antimicrobial agents.

[49]  A. Corso,et al.  Can We Use Imipenem and Meropenem Vitek 2 MICs for Detection of Suspected KPC and Other-Carbapenemase Producers among Species of Enterobacteriaceae? , 2010, Journal of Clinical Microbiology.

[50]  P. Nordmann,et al.  Multiplex PCR for detection of acquired carbapenemase genes. , 2011, Diagnostic microbiology and infectious disease.

[51]  M. Falagas,et al.  Tigecycline for the treatment of multidrug-resistant Enterobacteriaceae: a systematic review of the evidence from microbiological and clinical studies. , 2008, The Journal of antimicrobial chemotherapy.

[52]  Y. Glupczynski,et al.  Comparative Evaluation of Two Chromogenic Tests for Rapid Detection of Carbapenemase in Enterobacteriaceae and in Pseudomonas aeruginosa Isolates , 2014, Journal of Clinical Microbiology.

[53]  Jiachang Cai,et al.  Detection of OmpK36 Porin Loss in Klebsiella spp. by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry , 2012, Journal of Clinical Microbiology.

[54]  Hui Wang,et al.  Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. , 2013, The Lancet. Infectious diseases.

[55]  D. F. Sahm,et al.  AmpC beta-lactamases. , 1998 .

[56]  P. Nordmann,et al.  Rapid Detection of Carbapenemase-producing Enterobacteriaceae , 2012, Emerging infectious diseases.

[57]  K. Bush,et al.  Carbapenemases: the Versatile β-Lactamases , 2007, Clinical Microbiology Reviews.