Structural equation modeling: a primer for health behavior researchers.

OBJECTIVE To introduce the state of the art of structural equation modeling (SEM). METHOD This primer is organized in a manner allowing readers to review any one of 5 freestanding sections. RESULTS SEM maintains several advantages over regression and other multivariate techniques. Through a 2-step modeling process, SEM strengthens research by allowing for the specification of complex, theory-driven models that can be tested with empirical data. Although use of SEM alone is not a magic solution, new software developments provide users with unparalleled flexibility for improving research. CONCLUSION SEM must be thrust into the daily vocabulary and routine practice of health behavior researchers.

[1]  Ulf Kroehne,et al.  (Why) Should We Use SEM? Pros and Cons of Structural Equation Modeling , 2003 .

[2]  Laura Klem,et al.  Structural equation modeling. , 2000 .

[3]  W. Wothke Longitudinal and multigroup modeling with missing data. , 2000 .

[4]  Ralph O. Mueller,et al.  Structural Equation Modeling: Back to Basics. Teacher's Corner , 1997 .

[5]  A. Panter,et al.  Writing about structural equation models. , 1995 .

[6]  H. Marsh,et al.  In Search of Golden Rules: Comment on Hypothesis-Testing Approaches to Setting Cutoff Values for Fit Indexes and Dangers in Overgeneralizing Hu and Bentler's (1999) Findings , 2004 .

[7]  Daniel J. Bauer Estimating Multilevel Linear Models as Structural Equation Models , 2003 .

[8]  C. Fornell,et al.  Canonical Correlation Analysis As A Special Case Of A Structural Relations Model. , 1981, Multivariate behavioral research.

[9]  L. Hayduk Structural equation modeling with LISREL , 1987 .

[10]  P. Bentler,et al.  Fit indices in covariance structure modeling : Sensitivity to underparameterized model misspecification , 1998 .

[11]  L. Harlow,et al.  Causation issues in structural equation modeling research , 1994 .

[12]  George R. Franke,et al.  Structural Equation Modeling with EQS and EQS/Windows , 1995 .

[13]  K. Mardia,et al.  The null distribution of multivariate kurtosis , 1983 .

[14]  P. Bentler,et al.  Cutoff criteria for fit indexes in covariance structure analysis : Conventional criteria versus new alternatives , 1999 .

[15]  Kyoung-Ok Park,et al.  Effects of social support at work on depression and organizational productivity. , 2004, American journal of health behavior.

[16]  D. A. Kenny,et al.  Correlation and causality , 1979 .

[17]  Rex B. Kline,et al.  Beyond Significance Testing: Reforming Data Analysis Methods in Behavioral Research , 2004 .

[18]  Xitao Fan,et al.  Canonical correlation analysis and structural equation modeling: What do they have in common? , 1997 .

[19]  L Nyström,et al.  Statistical Analysis , 2008, Encyclopedia of Social Network Analysis and Mining.

[20]  K. Yuan,et al.  Mardia's Multivariate Kurtosis with Missing Data , 2004 .

[21]  Robert C. Gardner,et al.  On the growth of structural equation modeling in psychological journals , 1996 .

[22]  M. Browne,et al.  Alternative Ways of Assessing Model Fit , 1992 .

[23]  B. Thompson Ten commandments of structural equation modeling. , 2000 .

[24]  Scott L. Hershberger,et al.  The Growth of Structural Equation Modeling: 1994-2001 , 2003 .

[25]  R. P. McDonald,et al.  Structural Equations with Latent Variables , 1989 .

[26]  Stephen G. West,et al.  Structural equation models with non-normal variables: Problems and remedies , 1995 .

[27]  C. J. Huberty,et al.  Multivariate analysis versus multiple univariate analyses. , 1989 .

[28]  Bruce Thompson,et al.  Why Multivariate Methods Are Usually Vital in Research: Some Basic Concepts. , 1994 .

[29]  Peter M. Bentler,et al.  Causal Modeling via Structural Equation Systems , 1988 .

[30]  R. Motl,et al.  Comparison of social variables for understanding physical activity in adolescent girls. , 2004, American journal of health behavior.

[31]  B. Byrne Book Review: Structural Equation Modeling with EQS and EQS/Windows: Basic Concepts, Applications, and Programming , 1994 .

[32]  James C. Anderson,et al.  STRUCTURAL EQUATION MODELING IN PRACTICE: A REVIEW AND RECOMMENDED TWO-STEP APPROACH , 1988 .

[33]  Timothy J. Robinson,et al.  Multilevel Analysis: Techniques and Applications , 2002 .

[34]  James L. Arbuckle,et al.  Full Information Estimation in the Presence of Incomplete Data , 1996 .

[35]  Bruce Thompson,et al.  Five Methodology Errors in Educational Research: The Pantheon of Statistical Significance and Other Faux Pas. , 1998 .

[36]  B. Byrne Structural equation modeling with EQS : basic concepts, applications, and programming , 2000 .

[37]  M. Hennessy,et al.  Using structural equations to estimate effects of behavioral interventions , 1994 .

[38]  Victor L. Willson,et al.  Is Parsimony Always Desirable? Identifying the Correct Model for a Longitudinal Panel Data Set , 1998 .

[39]  Peter M. Bentler,et al.  Estimates and tests in structural equation modeling. , 1995 .

[40]  K. Conrad,et al.  Beliefs of blue-collar workers: stage of readiness for exercise. , 2003, American journal of health behavior.

[41]  R. Gonzalez Applied Multivariate Statistics for the Social Sciences , 2003 .

[42]  G. A. Marcoulides,et al.  A First Course in Structural Equation Modeling , 2000 .

[43]  D. Flora,et al.  An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. , 2004, Psychological methods.

[44]  B. Muthén,et al.  How to Use a Monte Carlo Study to Decide on Sample Size and Determine Power , 2002 .

[45]  B. Thompson,et al.  EFFECTS OF SAMPLE SIZE, ESTIMATION METHODS, AND MODEL SPECIFICATION ON STRUCTURAL EQUATION MODELING FIT INDEXES , 1999 .

[46]  L. Fish Why Multivariate Methods are Usually Vital , 1988 .

[47]  B. Byrne Structural Equation Modeling with LISREL, PRELIS, and SIMPLIS: Basic Concepts, Applications, and Programming , 1998 .