Second-order particle MCMC for Bayesian parameter inference

We propose an improved proposal distribution in the Particle Metropolis-Hastings (PMH) algorithm for Bayesian parameter inference in nonlinear state space models. This proposal incorporates second-order information about the parameter posterior distribution, which can be extracted from the particle filter already used within the PMH algorithm. The added information makes the proposal scale-invariant, simpler to tune and can possibly also shorten the burn-in phase. The proposed algorithm has a computational cost which is proportional to the number of particles, i.e. the same as the original marginal PMH algorithm. Finally, we provide two numerical examples that illustrates some of the possible benefits of adding the second-order information.

[1]  Fredrik Lindsten,et al.  Backward Simulation Methods for Monte Carlo Statistical Inference , 2013, Found. Trends Mach. Learn..

[2]  Thomas B. Schön,et al.  Estimation of general nonlinear state-space systems , 2010, 49th IEEE Conference on Decision and Control (CDC).

[3]  P. Moral Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .

[4]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[5]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[6]  Václav Peterka,et al.  Bayesian system identification , 1979, Autom..

[7]  D. Pierre Forward Smoothing Using Sequential Monte Carlo , 2009 .

[8]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[9]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[10]  Johan Dahlin,et al.  Particle metropolis hastings using Langevin dynamics , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[11]  Brett Ninness,et al.  Bayesian system identification via Markov chain Monte Carlo techniques , 2010, Autom..

[12]  J. Rosenthal,et al.  Optimal scaling of discrete approximations to Langevin diffusions , 1998 .

[13]  NinnessBrett,et al.  Bayesian system identification via Markov chain Monte Carlo techniques , 2010 .

[14]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[15]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[16]  O. Cappé,et al.  Sequential Monte Carlo smoothing with application to parameter estimation in nonlinear state space models , 2006, math/0609514.

[17]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[18]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[19]  Pierre Del Moral Feynman-Kac and Interacting Particle Recipes , 2004 .

[20]  T. Louis Finding the Observed Information Matrix When Using the EM Algorithm , 1982 .

[21]  G. Casella,et al.  Report of the Editors—2010 , 2011 .

[22]  L. Dousset Understanding Human Relations (Kinship Systems) , 2011 .

[23]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[24]  Genshiro Kitagawa,et al.  Monte Carlo Smoothing and Self-Organising State-Space Model , 2001, Sequential Monte Carlo Methods in Practice.

[25]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[26]  Sumeetpal S. Singh,et al.  Particle approximations of the score and observed information matrix in state space models with application to parameter estimation , 2011 .

[27]  Haikady N. Nagaraja,et al.  Inference in Hidden Markov Models , 2006, Technometrics.

[28]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[29]  C. Andrieu,et al.  The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.

[30]  Ralph S. Silva,et al.  On Some Properties of Markov Chain Monte Carlo Simulation Methods Based on the Particle Filter , 2012 .

[31]  Richard G. Everitt,et al.  Bayesian Parameter Estimation for Latent Markov Random Fields and Social Networks , 2012, ArXiv.

[32]  Eric Moulines,et al.  Inference in hidden Markov models , 2010, Springer series in statistics.