Second-order particle MCMC for Bayesian parameter inference
暂无分享,去创建一个
[1] Fredrik Lindsten,et al. Backward Simulation Methods for Monte Carlo Statistical Inference , 2013, Found. Trends Mach. Learn..
[2] Thomas B. Schön,et al. Estimation of general nonlinear state-space systems , 2010, 49th IEEE Conference on Decision and Control (CDC).
[3] P. Moral. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .
[4] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[5] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[6] Václav Peterka,et al. Bayesian system identification , 1979, Autom..
[7] D. Pierre. Forward Smoothing Using Sequential Monte Carlo , 2009 .
[8] M. Pitt,et al. Filtering via Simulation: Auxiliary Particle Filters , 1999 .
[9] Rory A. Fisher,et al. Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.
[10] Johan Dahlin,et al. Particle metropolis hastings using Langevin dynamics , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.
[11] Brett Ninness,et al. Bayesian system identification via Markov chain Monte Carlo techniques , 2010, Autom..
[12] J. Rosenthal,et al. Optimal scaling of discrete approximations to Langevin diffusions , 1998 .
[13] NinnessBrett,et al. Bayesian system identification via Markov chain Monte Carlo techniques , 2010 .
[14] Alan G. White,et al. The Pricing of Options on Assets with Stochastic Volatilities , 1987 .
[15] A. Doucet,et al. Particle Markov chain Monte Carlo methods , 2010 .
[16] O. Cappé,et al. Sequential Monte Carlo smoothing with application to parameter estimation in nonlinear state space models , 2006, math/0609514.
[17] Christian P. Robert,et al. Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.
[18] A. Doucet,et al. A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .
[19] Pierre Del Moral. Feynman-Kac and Interacting Particle Recipes , 2004 .
[20] T. Louis. Finding the Observed Information Matrix When Using the EM Algorithm , 1982 .
[21] G. Casella,et al. Report of the Editors—2010 , 2011 .
[22] L. Dousset. Understanding Human Relations (Kinship Systems) , 2011 .
[23] P. Moral,et al. Sequential Monte Carlo samplers , 2002, cond-mat/0212648.
[24] Genshiro Kitagawa,et al. Monte Carlo Smoothing and Self-Organising State-Space Model , 2001, Sequential Monte Carlo Methods in Practice.
[25] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[26] Sumeetpal S. Singh,et al. Particle approximations of the score and observed information matrix in state space models with application to parameter estimation , 2011 .
[27] Haikady N. Nagaraja,et al. Inference in Hidden Markov Models , 2006, Technometrics.
[28] M. Girolami,et al. Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[29] C. Andrieu,et al. The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.
[30] Ralph S. Silva,et al. On Some Properties of Markov Chain Monte Carlo Simulation Methods Based on the Particle Filter , 2012 .
[31] Richard G. Everitt,et al. Bayesian Parameter Estimation for Latent Markov Random Fields and Social Networks , 2012, ArXiv.
[32] Eric Moulines,et al. Inference in hidden Markov models , 2010, Springer series in statistics.