Robust stability and performance of linear time-varying systems in polytopic domains

A sufficient condition to assess the stability of linear time-varying systems in polytopic domains is given in this paper. This condition is written as a feasibility test of linear matrix inequalities expressed at the polytope vertices and taking bounds on the time-derivatives of the system parameters into account. Differently from other techniques in the literature, there is no need of gridding procedures on the parameter space neither restrictive assumptions on the uncertainty structure. The proposed test can be solved in polynomial time yielding as solution a parameter dependent Lyapunov function that assures the system stability. Moreover, the results can be applied to systems with affine parameter uncertainty and can be easily extended to deal with guaranteed cost computation. Numerical examples show that the proposed condition can lead to less conservative evaluations of the stability domain and of the performance index for this class of systems when compared to the results based on the conventional quadratic stability or to the ones from similar techniques in the literature.

[1]  B. Barmish Necessary and sufficient conditions for quadratic stabilizability of an uncertain system , 1985 .

[2]  J. S. Gibson,et al.  A first-order Lyapunov robustness method for linear systems with uncertain parameters , 1990 .

[3]  D. Bernstein,et al.  Parameter-dependent Lyapunov functions and the Popov criterion in robust analysis and synthesis , 1995, IEEE Trans. Autom. Control..

[4]  M. Fu,et al.  Piecewise Lyapunov functions for robust stability of linear time-varying systems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[5]  P. Gahinet,et al.  Affine parameter-dependent Lyapunov functions and real parametric uncertainty , 1996, IEEE Trans. Autom. Control..

[6]  F. Blanchini,et al.  On the transient estimate for linear systems with time-varying uncertain parameters , 1996 .

[7]  E. Feron,et al.  Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions , 1996, IEEE Trans. Autom. Control..

[8]  Massimiliano Mattei,et al.  A MULTIVARIABLE STABILITY MARGIN IN THE PRESENCE OF TIME-VARYING, BOUNDED RATE GAINS , 1997 .

[9]  Pedro Luis Dias Peres,et al.  Hinfinityand H2 guaranteed costs computation for uncertain linear systems , 1997, Int. J. Syst. Sci..

[10]  E. Kaszkurewicz,et al.  A team algorithm for robust stability analysis and control design of uncertain time-varying linear systems using piecewise quadratic Lyapunov functions , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[11]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[12]  Liu Hsu,et al.  LMI characterization of structural and robust stability , 1998 .

[13]  P. Apkarian,et al.  Parametrized LMIs in control theory , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[14]  Liu Hsu,et al.  LMI characterization of structural and robust stability , 1998, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[15]  A. T. Neto Parameter dependent Lyapunov functions for a class of uncertain linear systems: an LMI approach , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[16]  S. Dasgupta,et al.  Parametric Lyapunov functions for uncertain systems: the multiplier approach , 1999 .

[17]  Laurent El Ghaoui,et al.  Advances in linear matrix inequality methods in control: advances in design and control , 1999 .

[18]  J. Bernussou,et al.  A new robust D-stability condition for real convex polytopic uncertainty , 2000 .

[19]  Anders Rantzer,et al.  Piecewise linear quadratic optimal control , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[20]  Takehiro Mori,et al.  A parameter-dependent Lyapunov function for a polytope of matrices , 2000, IEEE Trans. Autom. Control..

[21]  Pierre Apkarian,et al.  Parameterized LMIs in Control Theory , 2000, SIAM J. Control. Optim..

[22]  Eugenius Kaszkurewicz,et al.  A team algorithm for robust stability analysis and control design of uncertain time‐varying linear systems using piecewise quadratic Lyapunov functions , 2001 .

[23]  Carsten W. Scherer,et al.  LPV control and full block multipliers , 2001, Autom..

[24]  Tetsuya Iwasaki,et al.  LPV system analysis via quadratic separator for uncertain implicit systems , 2001, IEEE Trans. Autom. Control..

[25]  Dimitri Peaucelle,et al.  Robust performance analysis with LMI-based methods for real parametric uncertainty via parameter-dependent Lyapunov functions , 2001, IEEE Trans. Autom. Control..

[26]  Pedro Luis Dias Peres,et al.  An LMI condition for the robust stability of uncertain continuous-time linear systems , 2002, IEEE Trans. Autom. Control..

[27]  Graziano Chesi,et al.  Homogeneous Lyapunov functions for systems with structured uncertainties , 2003, Autom..

[28]  Graziano Chesi,et al.  Robust stability of polytopic systems via polynomially parameter-dependent Lyapunov functions , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[29]  Pedro L. D. Peres,et al.  A new LMI condition for the robust stability of linear time-varying systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[30]  Pedro Luis Dias Peres,et al.  An improved LMI condition for robust D-stability of uncertain polytopic systems , 2003, IEEE Trans. Autom. Control..

[31]  Ricardo C. L. F. Oliveira,et al.  I guaranteed cost computation by means of parameter-dependent Lyapunov functions , 2004, Autom..

[32]  Pierre-Alexandre Bliman,et al.  A Convex Approach to Robust Stability for Linear Systems with Uncertain Scalar Parameters , 2003, SIAM J. Control. Optim..