Effects of CuO doping on the piezoelectric properties of KNLNS–BZ ceramics

[1]  A. del Campo,et al.  Lead-Free Piezoceramics: Revealing the Role of the Rhombohedral-Tetragonal Phase Coexistence in Enhancement of the Piezoelectric Properties. , 2015, ACS applied materials & interfaces.

[2]  M. Villafuerte-Castrejón,et al.  Dielectric, Ferroelectric, and Piezoelectric Properties of Mn-Doped K0.5Na0.5NbO3 Lead-Free Ceramics , 2015, Journal of Electronic Materials.

[3]  Jianguo Zhu,et al.  New potassium-sodium niobate ceramics with a giant d33. , 2014, ACS applied materials & interfaces.

[4]  Jianguo Zhu,et al.  Giant piezoelectricity in potassium-sodium niobate lead-free ceramics. , 2014, Journal of the American Chemical Society.

[5]  Jianguo Zhu,et al.  Lead-free piezoelectrics based on potassium-sodium niobate with giant d(33). , 2013, ACS applied materials & interfaces.

[6]  Michael J. Hoffmann,et al.  Interactions of defect complexes and domain walls in CuO-doped ferroelectric (K,Na)NbO3 , 2013 .

[7]  Qing-Ming Wang,et al.  High and Frequency‐Insensitive Converse Piezoelectric Coefficient Obtained in AgSbO3‐Modified (Li, K, Na)(Nb,Ta)O3 Lead‐Free Piezoceramics , 2013 .

[8]  S. Nahm,et al.  Piezoelectric properties of CuO-added (Na0.5K0.5)NbO3 ceramic multilayers , 2012 .

[9]  Yongjie Zhao,et al.  Microstructure and piezoelectric properties of CuO-doped 0.95(K0.5Na0.5)NbO3–0.05Li(Nb0.5Sb0.5)O3 lead-free ceramics , 2011 .

[10]  R. Zuo,et al.  Rhombohedral–Tetragonal Phase Coexistence and Piezoelectric Properties of (NaK)(NbSb)O3–LiTaO3–BaZrO3 Lead‐Free Ceramics , 2011 .

[11]  Jianguo Zhu,et al.  Effects of CuO doping on the electrical properties of 0.98K0.5Na0.5NbO3–0.02BiScO3 lead-free piezoelectric ceramics , 2011 .

[12]  Yongjie Zhao,et al.  Low-Temperature Sintering of CuO-Doped 0.94(K0.48Na0.535)NbO3–0.06LiNbO3 Lead-Free Piezoelectric Ceramics , 2010 .

[13]  W. Tai,et al.  Piezoelectric Properties of Lead-Free Na0.5K0.5NbO3 Ceramics Co-Doped with NiO and CuO , 2010 .

[14]  X. Ren,et al.  Large piezoelectric effect in Pb-free ceramics. , 2009, Physical review letters.

[15]  N. Zhang,et al.  A comprehensive study of the phase diagram of KxNa1−xNbO3 , 2009 .

[16]  Guohua Chen,et al.  Phase structures and electrical properties of new lead-free Na0.5K0.5NbO3-LiSbO3-BiFeO3 ceramics , 2009 .

[17]  T. Goto,et al.  High Piezoelectric d33 Coefficient in Li/Ta/Sb‐Codoped Lead‐Free (Na,K)NbO3 Ceramics Sintered at Optimal Temperature , 2008 .

[18]  K. Kwok,et al.  Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoelectric ceramics , 2008 .

[19]  S. Wada,et al.  Enhancement of Qm by co-doping of Li and Cu to potassium sodium niobate lead-free ceramics , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[20]  K. Lam,et al.  A Rosen-type piezoelectric transformer employing lead-free K0.5Na0.5NbO3 ceramics , 2008 .

[21]  K. Uchino,et al.  Microstructure and piezoelectric properties of (1-x ) (Na0.5K0.5 )NbO3- ΧLiNbO3 ceramics , 2007 .

[22]  A. Ding,et al.  DIELECTRIC AND PIEZOELECTRIC PROPERTIES OF Mn DOPED (K, Na)0.96Sr0.02NbO3 CERAMICS , 2006 .

[23]  V. Isupov Ferroelectric Na0.5Bi0.5TiO3 and K0.5Bi0.5TiO3 Perovskites and Their Solid Solutions , 2005 .

[24]  K. Yoon,et al.  Electrical characteristics of high power piezoelectric transformer for 28 W fluorescent lamp , 2001 .

[25]  G. Shirane,et al.  Stability of the monoclinic phase in the ferroelectric perovskite PbZr1-xTixO3 , 2000, cond-mat/0006152.

[26]  L. Pardo,et al.  Automatic determination of complex constants of piezoelectric lossy materials in the radial mode , 1995 .

[27]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .