Control of LPV systems with partly measured parameters

The control of linear parameter-varying (LPV) systems with time-varying real uncertain parameters, where only some of the parameters are measured and available for feedback, is considered. The control objectives are internal stability and disturbance attenuation in the sense of a bounded induced L/sub 2/-norm from the disturbance to the controlled output. Using parametric Lyapunov functions, the solvability conditions for dynamic output feedback controllers that depend on the measured parameters are expressed in terms of a set of linear matrix inequalities (LMIs) and an additional coupling constraint which destroys the convexity of the overall problem. By transforming the coupling constraint into a rank condition, the problem is recast into a rank-minimization problem with LMI constraints. An example is included that demonstrates the application of the results.

[1]  Pierre Apkarian,et al.  Self-scheduled H∞ control of linear parameter-varying systems: a design example , 1995, Autom..

[2]  Jakob Stoustrup,et al.  Robust performance of systems with structured uncertainties in state space , 1995, Autom..

[3]  Gang Tao,et al.  On robust adaptive control of robot manipulators , 1992, Autom..

[4]  Romeo Ortega,et al.  Robustness of adaptive controllers - A survey , 1989, Autom..

[5]  A. Sideris,et al.  H/sub /spl infin// control with parametric Lyapunov functions , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[6]  Jean-Jacques E. Slotine,et al.  The Robust Control of Robot Manipulators , 1985 .

[7]  A. Tits,et al.  Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics , 1991 .

[8]  L. Praly,et al.  Adaptive nonlinear regulation: estimation from the Lyapunov equation , 1992 .

[9]  Lakmal Seneviratne,et al.  Adaptive Control Of Robot Manipulators , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10]  R. Marino,et al.  Robust adaptive state-feedback tracking for nonlinear systems , 1998, IEEE Trans. Autom. Control..

[11]  A. Packard Gain scheduling via linear fractional transformations , 1994 .

[12]  P. Gahinet,et al.  Affine parameter-dependent Lyapunov functions and real parametric uncertainty , 1996, IEEE Trans. Autom. Control..

[13]  Patrizio Tomei,et al.  Adaptive PD controller for robot manipulators , 1991, IEEE Trans. Robotics Autom..

[14]  A. Tits,et al.  Robustness in the Presence of Joint parametric Uncertainty and Unmodeled Dynamics , 1988, 1988 American Control Conference.

[15]  Patrizio Tomei,et al.  Tracking control with disturbance attenuation for robot manipulators , 1996 .

[16]  Fen Wu,et al.  Induced L2‐norm control for LPV systems with bounded parameter variation rates , 1996 .

[17]  L. Ghaoui,et al.  A cone complementarity linearization algorithm for static output-feedback and related problems , 1997, IEEE Trans. Autom. Control..

[18]  J. Slotine,et al.  On the Adaptive Control of Robot Manipulators , 1987 .

[19]  P. Gahinet,et al.  A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..

[20]  P. Gahinet,et al.  A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..

[21]  G. Scorletti,et al.  Improved linear matrix inequality conditions for gain scheduling , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[22]  A. Packard,et al.  Robust performance of linear parametrically varying systems using parametrically-dependent linear feedback , 1994 .

[23]  K. Grigoriadis,et al.  A Combined Alternating Projections and Semidefinite Programming Algorithm for Low-Order Control Design , 1996 .

[24]  R. Marino,et al.  Nonlinear H ∞ almost disturbance decoupling , 1994 .

[25]  Athanasios Sideris,et al.  H ∞ control with parametric Lyapunov functions , 1997 .

[26]  Martin Corless,et al.  Simple robust tracking controllers for robotic manipulators , 1994 .

[27]  Faryar Jabbari Output feedback controllers for systems with structured uncertainty , 1997, IEEE Trans. Autom. Control..

[28]  Romeo Ortega,et al.  Adaptive motion control of rigid robots: a tutorial , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[29]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[30]  Karolos M. Grigoriadis,et al.  Low-order control design for LMI problems using alternating projection methods , 1996, Autom..

[31]  P. Tomei Tracking control of flexible joint robots with uncertain parameters and disturbances , 1994, IEEE Trans. Autom. Control..

[32]  Suguru Arimoto,et al.  Stability and robustness of PID feedback control for robot manipulators of sensory capability , 1984 .