Lysosomal fusion and SNARE function are impaired by cholesterol accumulation in lysosomal storage disorders

[1]  T. Noda,et al.  Combinational Soluble N-Ethylmaleimide-sensitive Factor Attachment Protein Receptor Proteins VAMP8 and Vti1b Mediate Fusion of Antimicrobial and Canonical Autophagosomes with Lysosomes , 2010, Molecular biology of the cell.

[2]  Kai Simons,et al.  Lipid Rafts As a Membrane-Organizing Principle , 2010, Science.

[3]  D. Lingwood,et al.  Order of lipid phases in model and plasma membranes , 2009, Proceedings of the National Academy of Sciences.

[4]  A. Ballabio,et al.  A Gene Network Regulating Lysosomal Biogenesis and Function , 2009, Science.

[5]  Ming Zhang,et al.  Rab7: roles in membrane trafficking and disease. , 2009, Bioscience reports.

[6]  S. Walkley,et al.  Secondary lipid accumulation in lysosomal disease. , 2009, Biochimica et biophysica acta.

[7]  A. Galione,et al.  Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium , 2008, Nature Medicine.

[8]  A. Ballabio,et al.  Proteoglycan desulfation determines the efficiency of chondrocyte autophagy and the extent of FGF signaling during endochondral ossification. , 2008, Genes & development.

[9]  P. Evans,et al.  Molecular Basis for the Sorting of the SNARE VAMP7 into Endocytic Clathrin-Coated Vesicles by the ArfGAP Hrb , 2008, Cell.

[10]  K. Kiselyov,et al.  Membrane traffic and turnover in TRP-ML1-deficient cells: a revised model for mucolipidosis type IV pathogenesis , 2008 .

[11]  R. Heintzmann,et al.  A Novel Site of Action for α-SNAP in the SNARE Conformational Cycle Controlling Membrane Fusion , 2007 .

[12]  T. Lang SNARE proteins and ‘membrane rafts’ , 2007, The Journal of physiology.

[13]  Sharon E. Miller,et al.  A SNARE–adaptor interaction is a new mode of cargo recognition in clathrin-coated vesicles , 2007, Nature.

[14]  M. Fivaz,et al.  Late Endosomal Cholesterol Accumulation Leads to Impaired Intra-Endosomal Trafficking , 2007, PloS one.

[15]  X. Bi,et al.  Cholesterol accumulation is associated with lysosomal dysfunction and autophagic stress in Npc1 -/- mouse brain. , 2007, The American journal of pathology.

[16]  D. Lingwood,et al.  Detergent resistance as a tool in membrane research , 2007, Nature Protocols.

[17]  J. Paul Luzio,et al.  Lysosomes: fusion and function , 2007, Nature Reviews Molecular Cell Biology.

[18]  T. Noda,et al.  Dissection of the Autophagosome Maturation Process by a Novel Reporter Protein, Tandem Fluorescent-Tagged LC3 , 2007, Autophagy.

[19]  Q. Zeng,et al.  VAMP4 cycles from the cell surface to the trans-Golgi network via sorting and recycling endosomes , 2007, Journal of Cell Science.

[20]  P. Roche,et al.  Ternary SNARE Complexes Are Enriched in Lipid Rafts during Mast Cell Exocytosis , 2006, Traffic.

[21]  E. Cattaneo,et al.  Cholesterol dysfunction in neurodegenerative diseases: Is Huntington's disease in the list? , 2006, Progress in Neurobiology.

[22]  A. Cuervo,et al.  Lysosome membrane lipid microdomains: novel regulators of chaperone‐mediated autophagy , 2006, The EMBO journal.

[23]  Reinhard Jahn,et al.  SNAREs — engines for membrane fusion , 2006, Nature Reviews Molecular Cell Biology.

[24]  M. MacDonald,et al.  Autophagy Is Disrupted in a Knock-in Mouse Model of Juvenile Neuronal Ceroid Lipofuscinosis* , 2006, Journal of Biological Chemistry.

[25]  E. Ralston,et al.  Dysfunction of endocytic and autophagic pathways in a lysosomal storage disease , 2006, Annals of neurology.

[26]  G. Gould,et al.  Lipid Raft Association of SNARE Proteins Regulates Exocytosis in PC12 Cells* , 2005, Journal of Biological Chemistry.

[27]  Alex Soler-Jover,et al.  Synaptic proteins and SNARE complexes are localized in lipid rafts from rat brain synaptosomes. , 2005, Biochemical and biophysical research communications.

[28]  L. Rajendran,et al.  Lipid rafts and membrane dynamics , 2005, Journal of Cell Science.

[29]  S. E. Miller,et al.  EpsinR is an adaptor for the SNARE protein Vti1b. , 2004, Molecular biology of the cell.

[30]  R. Pagano,et al.  Elevated endosomal cholesterol levels in Niemann-Pick cells inhibit rab4 and perturb membrane recycling. , 2004, Molecular biology of the cell.

[31]  D. James,et al.  Combinatorial SNARE complexes with VAMP7 or VAMP8 define different late endocytic fusion events , 2004, EMBO reports.

[32]  Kai Simons,et al.  Model systems, lipid rafts, and cell membranes. , 2004, Annual review of biophysics and biomolecular structure.

[33]  M. Francolini,et al.  Role of Lipid Microdomains in P/Q-type Calcium Channel (Cav2.1) Clustering and Function in Presynaptic Membranes* , 2004, Journal of Biological Chemistry.

[34]  P. Kinnunen,et al.  Elevated lysosomal pH in neuronal ceroid lipofuscinoses (NCLs). , 2001, European journal of biochemistry.

[35]  R. J. Barnard,et al.  SNARE-complex disassembly by NSF follows synaptic-vesicle fusion , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[36]  W. Wickner,et al.  Ergosterol is required for the Sec18/ATP‐dependent priming step of homotypic vacuole fusion , 2001, The EMBO journal.

[37]  D. Bruns,et al.  SNAREs are concentrated in cholesterol‐dependent clusters that define docking and fusion sites for exocytosis , 2001, The EMBO journal.

[38]  G. Gould,et al.  SNARE proteins are highly enriched in lipid rafts in PC12 cells: Implications for the spatial control of exocytosis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[39]  K. Simons,et al.  Jamming the endosomal system: lipid rafts and lysosomal storage diseases. , 2000, Trends in cell biology.

[40]  R. Lüllmann-Rauch,et al.  Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice , 2000, Nature.

[41]  V. Puri,et al.  Cholesterol modulates membrane traffic along the endocytic pathway in sphingolipid-storage diseases , 1999, Nature Cell Biology.

[42]  K. Mills,et al.  Application of magnetic chromatography to the isolation of lysosomes from fibroblasts of patients with lysosomal storage disorders , 1998, FEBS letters.

[43]  Benedikt Westermann,et al.  SNAREpins: Minimal Machinery for Membrane Fusion , 1998, Cell.

[44]  E. Ikonen,et al.  Functional rafts in cell membranes , 1997, Nature.

[45]  T. McMahon,et al.  Overexpression of ε-Protein Kinase C Enhances Nerve Growth Factor-induced Phosphorylation of Mitogen-activated Protein Kinases and Neurite Outgrowth (*) , 1995, The Journal of Biological Chemistry.

[46]  P. Hanson,et al.  The N-Ethylmaleimide-sensitive Fusion Protein and α-SNAP Induce a Conformational Change in Syntaxin (*) , 1995, The Journal of Biological Chemistry.

[47]  T. Südhof,et al.  Synaptic Core Complex of Synaptobrevin, Syntaxin, and SNAP25 Forms High Affinity -SNAP Binding Site (*) , 1995, The Journal of Biological Chemistry.

[48]  Mark K. Bennett,et al.  A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion , 1993, Cell.

[49]  Andrea Ballabio,et al.  A block of autophagy in lysosomal storage disorders. , 2008, Human molecular genetics.

[50]  R. Heintzmann,et al.  A novel site of action for alpha-SNAP in the SNARE conformational cycle controlling membrane fusion. , 2008, Molecular biology of the cell.

[51]  H. Sakuraba [Lysosomal disease]. , 2003, Ryoikibetsu shokogun shirizu.

[52]  F. Fahrenholz,et al.  Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles , 1999, Nature Cell Biology.