RLumCarlo: Simulating Cold Light using Monte Carlo Methods

Luminescence phenomena of insulators and semiconductors (e.g., natural minerals such as quartz) have various application domains. For instance, Earth Sciences and archaeology exploit luminescence as a dating method. Herein, we present the R package RLumCarlo implementing sets of luminescence models to be simulated with Monte Carlo (MC) methods. MC methods make a powerful ally to all kind of simulation attempts involving stochastic processes. Luminescence production is such a stochastic process in the form of charge (electron-hole pairs) interaction within insulators and semiconductors. To simulate luminescence-signal curves, we distribute single and independent MC processes to virtual MC clusters. RLumCarlo comes with a modularised design and consistent user interface: (1) C++ functions represent the modelling core and implement models for specific stimulations modes. (2) R functions give access to combinations of models and stimulation modes, start the simulation and render terminal and graphical feedback. The combination of MC clusters supports the simulation of complex luminescence phenomena.

[1]  A. Mandowski,et al.  Monte Carlo simulation of thermally stimulated relaxation kinetics of carrier trapping in microcrystalline and two-dimensional solids , 1992 .

[2]  J. Gasiot,et al.  Optically Stimulated Luminescence Dosimetry , 1983 .

[3]  J. Randall,et al.  Phosphorescence and electron traps - I. The study of trap distributions , 1945, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[4]  A. Halperin,et al.  Evaluation of Thermal Activation Energies from Glow Curves , 1960 .

[5]  I. Eliyahu,et al.  KINETIC SIMULATIONS OF THERMOLUMINESCENCE DOSE RESPONSE: LONG OVERDUE CONFRONTATION WITH THE EFFECTS OF IONISATION DENSITY. , 2016, Radiation protection dosimetry.

[6]  V. Pagonis,et al.  On the stochastic uncertainties of thermally and optically stimulated luminescence signals: A Monte Carlo approach , 2020 .

[7]  N. Catto Handbook of Luminescence Dating , 2019, Elements.

[8]  Reuven Chen,et al.  A model for explaining the concentration quenching of thermoluminescence , 2011 .

[9]  Christoph Schmidt,et al.  RLumShiny - A graphical user interface for the R Package ’Luminescence’ , 2016 .

[10]  K. Binder,et al.  A Guide to Monte Carlo Simulations in Statistical Physics: Monte Carlo studies of biological molecules , 2009 .

[11]  Reuven Chen,et al.  Monte Carlo simulations of TL and OSL in nanodosimetric materials and feldspars , 2015 .

[12]  A. Mandowski,et al.  On the determination of trap parameters from TSC spectra in finite-size systems , 1991, [1991 Proceedings] 7th International Symposium on Electrets (ISE 7).

[13]  Sebastian Kreutzer,et al.  Introducing an R package for luminescence dating analysis , 2012 .

[14]  Reuven Chen,et al.  THEORY OF THERMOLUMINESCENCE AND RELATED PHENOMENA , 1997 .

[15]  A. Wintle Thermal Quenching of Thermoluminescence in Quartz , 1975 .

[16]  R. Bailey Towards a general kinetic model for optically and thermally stimulated luminescence of quartz , 2001 .

[17]  C. Furetta OPTICALLY STIMULATED LUMINESCENCE , 2008 .

[18]  R. P. Johnson Luminescence of Sulphide and Silicate Phosphors , 1939 .

[19]  Vasilis Pagonis,et al.  Monte Carlo simulations of luminescence processes under quasi-equilibrium (QE) conditions , 2014 .

[20]  Eugene V. Koonin,et al.  Biological applications of the theory of birth-and-death processes , 2005, Briefings Bioinform..

[21]  Steve Weston,et al.  Foreach Parallel Adaptor for the 'parallel' Package , 2015 .

[22]  Christoph Schmidt,et al.  Radiofluorescence as a detection tool for quartz luminescence quenching processes , 2018, Radiation Measurements.

[23]  E. N. Harvey,et al.  A History of Luminescence: From the Earliest Times Until 1900 , 2005 .

[24]  J. Feathers,et al.  An introduction to optical dating , 2000 .

[25]  Jun Peng,et al.  tgcd: An R package for analyzing thermoluminescence glow curves , 2016, SoftwareX.

[26]  C. Furetta,et al.  Numerical and practical exercises in thermoluminescence , 2006 .

[27]  V. Pagonis,et al.  Simulations of the predose technique for retrospective dosimetry and authenticity testing , 2008 .

[28]  Reuven Chen,et al.  Excited state luminescence signals from a random distribution of defects: A new Monte Carlo simulation approach for feldspar , 2019, Journal of Luminescence.

[29]  V. Pagonis,et al.  Simulating comprehensive kinetic models for quartz luminescence using the R program KMS , 2016 .

[30]  Dirk Eddelbuettel,et al.  Rcpp: Seamless R and C++ Integration , 2011 .

[31]  Z. Dong,et al.  R package numOSL: numeric routines for optically stimulated luminescence dating , 2013 .

[32]  A. Philippe,et al.  BayLum - An R package for Bayesian analysis of OSL ages: An introduction , 2019, Quaternary Geochronology.

[33]  David J. Huntley,et al.  An explanation of the power-law decay of luminescence , 2006 .

[34]  Sebastian Kreutzer,et al.  Solving ordinary differential equations to understand luminescence : 'RLumModel', an advanced research tool for simulating luminescence in quartz using R , 2016 .

[35]  Donald F. Saunders,et al.  Thermoluminescence as a Research Tool. , 1953, Science.