Effects of Sublethal Zn++ and Cd++ Concentrations on Filtration Rate, Absorption Efficiency and Scope for Growth in Donax trunculus (Bivalvia; Donacidae)

[1]  L. Robinson,et al.  A Model for Bioaccumulation of Metals in Crassostrea virginica from Apalachicola Bay, Florida , 2005 .

[2]  Y. Achituv,et al.  Sublethal Effects of Zn++ and Cd++ on Respiration Rate, Ammonia Excretion, and O:N Ratio of Donax trunculus (Bivalvia; Donacidae) , 2005, Bulletin of environmental contamination and toxicology.

[3]  R. Smolders,et al.  The effect of environmental stress on absolute and mass-specific scope for growth in Daphnia magna Strauss. , 2005, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[4]  J. Narbonne,et al.  Study of Donax trunculus as a Sentinel Species for Environmental Monitoring of Sandy Beaches on Moroccan Coasts , 2004, Bulletin of Environmental Contamination and Toxicology.

[5]  S. Pouvreau,et al.  A comparative ecophysiological study of two infaunal filter-feeding bivalves: Paphia rhomboides and Glycymeris glycymeris , 2004 .

[6]  J. Readman,et al.  An integrated biomarker-based strategy for ecotoxicological evaluation of risk in environmental management. , 2004, Mutation research.

[7]  Y. Achituv,et al.  Effects of Zinc and Cadmium on the Burrowing Behavior, LC50, and LT50 on Donax trunculus Linnaeus (Bivalvia-Donacidae) , 2003, Bulletin of Environmental Contamination and Toxicology.

[8]  R. Smolders,et al.  Transplanted zebra mussels (Dreissena polymorpha) as active biomonitors in an effluent‐dominated river , 2002, Environmental toxicology and chemistry.

[9]  Des Connell,et al.  Introduction to Ecotoxicology , 1999 .

[10]  L. Fishelson,et al.  Toxicological aspects associated with the ecology of Donax trunculus (Bivalvia, Mollusca) in a polluted environment , 1999 .

[11]  F. Daniel,et al.  Biomarkers: Taking the science forward , 1994 .

[12]  P. Tyler,et al.  Effect of mercury and selenium on the gill function of Mytilus edulis , 1990 .

[13]  Y. Achituv,et al.  Seasonal changes in body weight and biochemical components of Mediterranean Chthamalus stellatus (Poli) and Euraphia depressa (Poli) , 1990 .

[14]  B. Bayne Measuring the Biological Effects of Pollution: The Mussel Watch Approach , 1989 .

[15]  B. Bayne,et al.  Protein turnover, physiological energetics and heterozygosity in the blue mussel, Mytilus edulis: the basis of variable age-specific growth , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[16]  J. Smith Copper exposure and ciliary function in gill tissue ofMytilus californianus , 1985, Bulletin of environmental contamination and toxicology.

[17]  J. Widdows Physiological responses to pollution , 1985 .

[18]  B. Bayne Cellular and physiological measures of pollution effect , 1985 .

[19]  J. Coughlan The estimation of filtering rate from the clearance of suspensions , 1969 .

[20]  R. Conover ASSIMILATION OF ORGANIC MATTER BY ZOOPLANKTON1 , 1966 .

[21]  M. Toussaint,et al.  UvA-DARE ( Digital Academic Repository ) Short-term effects of metals on the filtration rate of the zebra mussel Dreissena polymorpha , 2002 .

[22]  J. Widdows,et al.  Role of physiological energetics in ecotoxicology. , 1991, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology.

[23]  I. Sunila,et al.  The structure of the interfilamentar junction of the mussel (Mytilus edulis L.) gill and its uncoupling by copper and cadmium exposures , 1985 .

[24]  R. Newell,et al.  Biology of intertidal animals , 1970 .