Retrieval of aerosol microphysical properties from AERONET photopolarimetric measurements: 1. Information content analysis

This paper is the first part of a two‐part study that aims to retrieve aerosol particle size distribution (PSD) and refractive index from the multispectral and multiangular polarimetric measurements taken by the new‐generation Sun photometer as part of the Aerosol Robotic Network (AERONET). It provides theoretical analysis and guidance to the companion study in which we have developed an inversion algorithm for retrieving 22 aerosol microphysical parameters associated with a bimodal PSD function from real AERONET measurements. Our theoretical analysis starts with generating the synthetic measurements at four spectral bands (440, 675, 870, and 1020 nm) with a Unified Linearized Vector Radiative Transfer Model for various types of spherical aerosol particles. Subsequently, the quantitative information content for retrieving aerosol parameters is investigated in four observation scenarios, i.e., I1, I2, P1, and P2. Measurements in the scenario (I1) comprise the solar direct radiances and almucantar radiances that are used in the current AERONET operational inversion algorithm. The other three scenarios include different additional measurements: (I2) the solar principal plane radiances, (P1) the solar principal plane radiances and polarization, and (P2) the solar almucantar polarization. Results indicate that adding polarization measurements can increase the degree of freedom for signal by 2–5 in the scenario P1, while not as much of an increase is found in the scenarios I2 and P2. Correspondingly, smallest retrieval errors are found in the scenario P1: 2.3% (2.9%) for the fine‐mode (coarse‐mode) aerosol volume concentration, 1.3% (3.5%) for the effective radius, 7.2% (12%) for the effective variance, 0.005 (0.035) for the real‐part refractive index, and 0.019 (0.068) for the single‐scattering albedo. These errors represent a reduction from their counterparts in scenario I1 of 79% (57%), 76% (49%), 69% (52%), 66% (46%), and 49% (20%), respectively. We further investigated those retrieval errors over a variety of aerosol loading and fine‐/coarse‐mode prevalence, which indicates that observations in scenario P1 can yield the retrieval of refractive index and single‐scattering albedo for both fine and coarse aerosol modes, when aerosol optical depth at 440 nm is larger than 0.2 and 870/1020 nm Ångström exponent ranges between 0.7 and 1.6.

[1]  Alexander Smirnov,et al.  Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network , 2010 .

[2]  J. Randerson,et al.  Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009) , 2010 .

[3]  Didier Tanré,et al.  Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations , 2010 .

[4]  Jun Wang,et al.  Improved algorithm for MODIS satellite retrievals of aerosol optical thickness over land in dusty atmosphere: Implications for air quality monitoring in China , 2010 .

[5]  T. Eck,et al.  Global evaluation of the Collection 5 MODIS dark-target aerosol products over land , 2010 .

[6]  Ramesh P. Singh,et al.  Optical Properties of Fine/Coarse Mode Aerosol Mixtures , 2010 .

[7]  Daven K. Henze,et al.  Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau , 2010 .

[8]  R. Martin,et al.  Trans-Pacific transport of reactive nitrogen and ozone to Canada during spring , 2010 .

[9]  Stelios Kazadzis,et al.  Inferring absorbing organic carbon content from AERONET data , 2010 .

[10]  D. Jacob,et al.  Synthesis of satellite (MODIS), aircraft (ICARTT), and surface (IMPROVE, EPA‐AQS, AERONET) aerosol observations over eastern North America to improve MODIS aerosol retrievals and constrain surface aerosol concentrations and sources , 2010 .

[11]  D. G. Streets,et al.  Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000 , 2010 .

[12]  Qiang Fu,et al.  Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-U.S. joint dust field experiment , 2010, Journal of Geophysical Research.

[13]  Qiang Fu,et al.  Dust aerosol optical properties retrieval and radiative forcing over northwestern China during the 2008 China‐U.S. joint field experiment , 2010 .

[14]  P. Goloub,et al.  Calibration of the degree of linear polarization measurement of polarized radiometer using solar light. , 2010, Applied optics.

[15]  Fabienne Maignan,et al.  Polarized reflectances of natural surfaces: Spaceborne measurements and analytical modeling , 2009 .

[16]  Majid Ezzati,et al.  Fine-particulate air pollution and life expectancy in the United States. , 2009, The New England journal of medicine.

[17]  Nickolay A. Krotkov,et al.  Retrieval of vertical columns of sulfur dioxide from SCIAMACHY and OMI: Air mass factor algorithm development, validation, and error analysis , 2009 .

[18]  Zhengqiang Li,et al.  Improvements for ground-based remote sensing of atmospheric aerosol properties by additional polarimetric measurements , 2009 .

[19]  M. Buchwitz,et al.  Global Estimates of CO Sources with High Resolution by Adjoint Inversion of Multiple Satellite Datasets (MOPITT, AIRS, SCIAMACHY, TES) , 2009 .

[20]  Michael B. McElroy,et al.  Constraint of anthropogenic NO x emissions in China from different sectors: a new methodology using multiple satellite retrievals , 2009 .

[21]  Bernhard Mayer,et al.  The impact of aerosols on polarized sky radiance: model development, validation, and applications , 2009 .

[22]  Sundar A. Christopher,et al.  Global Monitoring and Forecasting of Biomass-Burning Smoke: Description of and Lessons From the Fire Locating and Modeling of Burning Emissions (FLAMBE) Program , 2009, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[23]  G. Carmichael,et al.  Asian emissions in 2006 for the NASA INTEX-B mission , 2009 .

[24]  M. Razinger,et al.  Aerosol analysis and forecast in the European Centre for Medium‐Range Weather Forecasts Integrated Forecast System: 2. Data assimilation , 2009 .

[25]  K. Boersma,et al.  Reductions of NO2 detected from space during the 2008 Beijing Olympic Games , 2009 .

[26]  D. Jacob,et al.  Comparison of Adjoint and Analytical Bayesian Inversion Methods for Constraining Asian Sources of Carbon Monoxide Using Satellite (MOPITT) Measurements of CO Columns , 2009 .

[27]  Beat Schmid,et al.  Polarimetric remote sensing of aerosols over land , 2009 .

[28]  Yunhai Xiao,et al.  Modified subspace limited memory BFGS algorithm for large-scale bound constrained optimization , 2008 .

[29]  T. Eck,et al.  Multi-sensor aerosol retrievals using joint inversion of AERONET and satellite observations: concept and applications. , 2008 .

[30]  Qingyuan Han,et al.  High‐spectral resolution simulation of polarization of skylight: Sensitivity to aerosol vertical profile , 2008 .

[31]  D. Jacob,et al.  Improved algorithm for MODIS satellite retrievals of aerosol optical depths over western North America , 2008 .

[32]  Henk Eskes,et al.  Intercomparison of SCIAMACHY and OMI Tropospheric NO2 Columns: Observing the Diurnal Evolution of Chemistry and Emissions from Space , 2008 .

[33]  J. Veefkind,et al.  Validation of Ozone Monitoring Instrument nitrogen dioxide columns , 2008 .

[34]  John H. Seinfeld,et al.  Inverse modeling and mapping US air quality influences of inorganic PM 2.5 precursor emissions using the adjoint of GEOS-Chem , 2008 .

[35]  S. Piketh,et al.  An overview of UAE2 flight operations: Observations of summertime atmospheric thermodynamic and aerosol profiles of the southern Arabian Gulf , 2008 .

[36]  David G. Streets,et al.  Analysis of aircraft and satellite measurements from the Intercontinental Chemical Transport Experiment (INTEX-B) to quantify long-range transport of East Asian sulfur to Canada , 2008 .

[37]  Jeffrey S. Reid,et al.  A system for operational aerosol optical depth data assimilation over global oceans , 2008 .

[38]  P. Goloub,et al.  Transferring the calibration of direct solar irradiance to diffuse-sky radiance measurements for CIMEL Sun-sky radiometers. , 2008, Applied optics.

[39]  Yoram J. Kaufman,et al.  Retrieving global aerosol sources from satellites using inverse modeling , 2008 .

[40]  T. Eck,et al.  Spatial and temporal variability of column-integrated aerosol optical properties in the southern Arabian Gulf and United Arab Emirates in summer , 2008 .

[41]  D. Jacob,et al.  Sensitivity of sulfate direct climate forcing to the hysteresis of particle phase transitions , 2007 .

[42]  H. Akimoto,et al.  An Asian emission inventory of anthropogenic emission sources for the period 1980-2020 , 2007 .

[43]  Oleg Dubovik,et al.  Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land , 2007 .

[44]  E. Vermote,et al.  Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance , 2007 .

[45]  Jean-François Léon,et al.  Aerosol retrieval over land using a multiband polarimeter and comparison with path radiance method , 2007 .

[46]  Jochen Landgraf,et al.  Retrieval of aerosol properties over land surfaces: capabilities of multiple-viewing-angle intensity and polarization measurements. , 2007, Applied optics.

[47]  Tami C. Bond,et al.  Historical emissions of black and organic carbon aerosol from energy‐related combustion, 1850–2000 , 2007 .

[48]  J. Hansen,et al.  Accurate monitoring of terrestrial aerosols and total solar irradiance: Introducing the Glory mission , 2007 .

[49]  Watson W. Gregg,et al.  Direct Insertion of MODIS Radiances in a Global Aerosol Transport Model , 2007 .

[50]  Daniel J. Jacob,et al.  The impact of transpacific transport of mineral dust in the United States , 2007 .

[51]  Alexander Smirnov,et al.  Aeronet's Version 2.0 quality assurance criteria , 2006, SPIE Asia-Pacific Remote Sensing.

[52]  J. Fischer,et al.  Effect of aerosol microphysical properties on polarization of skylight: sensitivity study and measurements. , 2006, Applied optics.

[53]  S. Martin,et al.  Satellite characterization of urban aerosols: Importance of including hygroscopicity and mixing state in the retrieval algorithms , 2006 .

[54]  Michael Schulz,et al.  Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations , 2006 .

[55]  Robert J. D. Spurr,et al.  VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media , 2006 .

[56]  J. Randerson,et al.  Interannual variability in global biomass burning emissions from 1997 to 2004 , 2006 .

[57]  J. Müller,et al.  Grid‐based versus big region approach for inverting CO emissions using Measurement of Pollution in the Troposphere (MOPITT) data , 2006 .

[58]  Jean-François Léon,et al.  Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust , 2006 .

[59]  Pawan K. Bhartia,et al.  Science objectives of the ozone monitoring instrument , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[60]  Oleg Dubovik,et al.  Angstrom exponent and bimodal aerosol size distributions , 2006 .

[61]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[62]  Otto P. Hasekamp,et al.  Retrieval of aerosol properties over the ocean from multispectral single‐viewing‐angle measurements of intensity and polarization: Retrieval approach, information content, and sensitivity study , 2005 .

[63]  Axel Lauer,et al.  © Author(s) 2006. This work is licensed under a Creative Commons License. Atmospheric Chemistry and Physics Analysis and quantification of the diversities of aerosol life cycles , 2022 .

[64]  Kathleen A. Crean,et al.  Multiangle imaging spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations : Global aerosol system , 2005 .

[65]  Oleg Dubovik,et al.  Inferring black carbon content and specific absorption from Aerosol Robotic Network (AERONET) aerosol retrievals , 2005 .

[66]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[67]  Jens Redemann,et al.  Retrieval of Aerosol Scattering and Absorption Properties from Photopolarimetric Observations over the Ocean during the CLAMS Experiment , 2005 .

[68]  D. Jacob,et al.  Estimating ground-level PM2.5 in the eastern United States using satellite remote sensing. , 2005, Environmental science & technology.

[69]  John C. Gille,et al.  Comparative inverse analysis of satellite (MOPITT) and aircraft (TRACE-P) observations to estimate Asian sources of carbon monoxide , 2004 .

[70]  Yoram J. Kaufman,et al.  Monitoring of aerosol forcing of climate from space: analysis of measurement requirements , 2004, Journal of Quantitative Spectroscopy and Radiative Transfer.

[71]  Sundar A. Christopher,et al.  Diurnal variability of dust aerosol optical thickness and Angström exponent over dust source regions in China , 2004 .

[72]  F. Maignan,et al.  Bidirectional reflectance of Earth targets: evaluation of analytical models using a large set of spaceborne measurements with emphasis on the Hot Spot , 2004 .

[73]  Sundar A. Christopher,et al.  The effects of non‐sphericity on geostationary satellite retrievals of dust aerosols , 2003 .

[74]  Michael Q. Wang,et al.  An inventory of gaseous and primary aerosol emissions in Asia in the year 2000 , 2003 .

[75]  Johannes Orphal,et al.  Ultraviolet and visible absorption cross-sections for HITRAN , 2003 .

[76]  C. Zender,et al.  Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology , 2003 .

[77]  O. Boucher,et al.  A satellite view of aerosols in the climate system , 2002, Nature.

[78]  Andrew A. Lacis,et al.  Scattering, Absorption, and Emission of Light by Small Particles , 2002 .

[79]  Oleg Dubovik,et al.  Non‐spherical aerosol retrieval method employing light scattering by spheroids , 2002 .

[80]  Brian Cairns,et al.  Case Studies of Aerosol Retrievals over the Ocean from Multiangle, Multispectral Photopolarimetric Remote Sensing Data , 2002 .

[81]  Teruyuki Nakajima,et al.  Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements , 2002 .

[82]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[83]  V. Ramanathan,et al.  Aerosols, Climate, and the Hydrological Cycle , 2001, Science.

[84]  D. Jacob,et al.  Global modeling of tropospheric chemistry with assimilated meteorology : Model description and evaluation , 2001 .

[85]  M. Chin,et al.  Sources and distributions of dust aerosols simulated with the GOCART model , 2001 .

[86]  K. Taylor Summarizing multiple aspects of model performance in a single diagram , 2001 .

[87]  F. Maignan,et al.  Remote sensing of aerosols over land surfaces from POLDER‐ADEOS‐1 polarized measurements , 2001 .

[88]  M. Mishchenko,et al.  Retrieval of aerosol properties over the ocean using multispectral and multiangle Photopolarimetric measurements from the Research Scanning Polarimeter , 2001 .

[89]  M. Herman,et al.  Retrieval of the scattering and microphysical properties of aerosols from ground-based optical measurements including polarization. I. Method. , 2000, Applied optics.

[90]  O. Boucher,et al.  Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review , 2000 .

[91]  Alexander Smirnov,et al.  Cloud-Screening and Quality Control Algorithms for the AERONET Database , 2000 .

[92]  Michael D. King,et al.  A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .

[93]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[94]  T. Eck,et al.  Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements , 2000 .

[95]  Alan H. Strahler,et al.  An algorithm for the retrieval of albedo from space using semiempirical BRDF models , 2000, IEEE Trans. Geosci. Remote. Sens..

[96]  J. Slusser,et al.  On Rayleigh Optical Depth Calculations , 1999 .

[97]  D. Tanré,et al.  Remote Sensing of Tropospheric Aerosols from Space: Past, Present, and Future. , 1999 .

[98]  Florence Nadal,et al.  Parameterization of surface polarized reflectance derived from POLDER spaceborne measurements , 1999, IEEE Trans. Geosci. Remote. Sens..

[99]  Yoram J. Kaufman,et al.  Retrieval of the real part of the refractive index of smoke particles from Sun/sky measurements during SCAR‐B , 1998 .

[100]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[101]  Catherine Gautier,et al.  SBDART: A Research and Teaching Software Tool for Plane-Parallel Radiative Transfer in the Earth's Atmosphere. , 1998 .

[102]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1998 .

[103]  Larry D. Travis,et al.  Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers , 1998 .

[104]  Bernard Pinty,et al.  Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview , 1998, IEEE Trans. Geosci. Remote. Sens..

[105]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[106]  Andrew A. Lacis,et al.  Analysis of ground-based polarimetric sky radiance measurements , 1997, Optics & Photonics.

[107]  E. Vermote,et al.  Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer , 1997 .

[108]  M. Mishchenko,et al.  Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight , 1997 .

[109]  T. Eck,et al.  Sun photometric measurements of atmospheric water vapor column abundance in the 940‐nm band , 1997 .

[110]  B. Holben,et al.  Use of sky brightness measurements from ground for remote sensing of particulate polydispersions. , 1996, Applied optics.

[111]  M. Mishchenko,et al.  Reprint of: T-matrix computations of light scattering by nonspherical particles: a review , 1996 .

[112]  Stephen E. Schwartz,et al.  Direct shortwave forcing of climate by the anthropogenic sulfate aerosol: Sensitivity to particle size, composition, and relative humidity , 1995 .

[113]  A. Strahler,et al.  On the derivation of kernels for kernel‐driven models of bidirectional reflectance , 1995 .

[114]  J. Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[115]  Yoram J. Kaufman,et al.  Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements , 1994 .

[116]  Manfred Wendisch,et al.  Possibility of refractive index determination of atmospheric aerosol particles by ground-based solar extinction and scattering measurements , 1994 .

[117]  Jean-Louis Roujean,et al.  Analysis of the POLDER (POLarization and directionality of earth's reflectances) airborne instrument observations over land surfaces , 1993 .

[118]  Graeme L. Stephens,et al.  A new polarized atmospheric radiative transfer model , 1991 .

[119]  Kinsell L. Coulson,et al.  Polarization and Intensity of Light in the Atmosphere , 1989 .

[120]  W. D. Rooij,et al.  Expansion of Mie scattering matrices in generalized spherical functions , 1984 .

[121]  T. Nakajima,et al.  Retrieval of the optical properties of aerosols from aureole and extinction data. , 1983, Applied optics.

[122]  T. Nakajima,et al.  Refractive Index and Size Distribution of Aerosols as Estimated from Light Scattering Measurements. , 1983 .

[123]  T. Nakajima,et al.  Simultaneous determination of complex refractive index and size distribution of airborne and water-suspended particles from light scattering measurements. , 1982 .

[124]  F. Agterberg Introduction to Mathematics of Inversion in Remote Sensing and Indirect Measurements , 1979 .

[125]  G. Shaw,et al.  Inversion of optical scattering and spectral extinction measurements to recover aerosol size spectra. , 1979, Applied optics.

[126]  Michael D. King,et al.  Aerosol size distributions obtained by inversion of spectral optical depth measurements , 1978 .

[127]  E. M. Patterson,et al.  Complex Index of Refraction Between 300 and 700 nm for Saharan Aerosols , 1977 .

[128]  J. Hansen,et al.  Light scattering in planetary atmospheres , 1974 .

[129]  John E. A. Selby,et al.  Optical Properties of the Atmosphere (Third Edition) , 1972 .

[130]  H. Grassl Determination of aerosol size distributions from spectral attenuation measurements. , 1971, Applied optics.

[131]  J. Dave Determination of size distribution of spherical polydispersions using scattered radiation data. , 1971, Applied optics.

[132]  B. Herman,et al.  Determination of aerosol size distributions from lidar measurements , 1971 .

[133]  G. Yamamoto,et al.  Determination of aerosol size distribution from spectral attenuation measurements. , 1969, Applied optics.

[134]  H. B. Howell,et al.  Some aspects of the optical estimation of microstructure in fog and cloud. , 1967, Applied optics.

[135]  J. Curcio,et al.  Evaluation of Atmospheric Aerosol Particle Size Distribution from Scattering Measurements in the Visible and Infrared , 1961 .

[136]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[137]  W. Munk,et al.  Measurement of the Roughness of the Sea Surface from Photographs of the Sun’s Glitter , 1954 .

[138]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[139]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[140]  Anders Ångström,et al.  On the Atmospheric Transmission of Sun Radiation and on Dust in the Air , 1929 .

[141]  David J. Diner,et al.  Retrieval of aerosol properties over land using MISR observations , 2009 .

[142]  R. Spurr LIDORT and VLIDORT: Linearized pseudo-spherical scalar and vector discrete ordinate radiative transfer models for use in remote sensing retrieval problems , 2008 .

[143]  T. G. Pace,et al.  Development of Fire Emissions Inventory Using Satellite Data , 2008 .

[144]  Oleg Dubovik,et al.  Optimization of Numerical Inversion in Photopolarimetric Remote Sensing , 2004 .

[145]  Robert J. D. Spurr,et al.  A new approach to the retrieval of surface properties from earthshine measurements , 2004 .

[146]  Joop W. Hovenier,et al.  Transfer of Polarized Light in Planetary Atmospheres , 2004 .

[147]  C. Tropea,et al.  Light Scattering from Small Particles , 2003 .

[148]  Clive D. Rodgers,et al.  Information content and optimisation of high spectral resolution remote measurements , 1998 .

[149]  S. Twomey Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements , 1997 .

[150]  Didier Tanré,et al.  Multi-band automatic sun and sky scanning radiometer system for measurement of aerosols , 1994 .

[151]  Jin Au Kong,et al.  Polarimetric remote sensing , 1990 .

[152]  M. Wesely Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models , 1989 .

[153]  P. Hansen Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .

[154]  S. Twomey,et al.  On the Numerical Solution of Fredholm Integral Equations of the First Kind by the Inversion of the Linear System Produced by Quadrature , 1963, JACM.

[155]  David L. Phillips,et al.  A Technique for the Numerical Solution of Certain Integral Equations of the First Kind , 1962, JACM.

[156]  K. Coulson,et al.  Tables related to radiation emerging from a planetary atmosphere with Rayleigh scattering , 1960 .

[157]  H. Maring,et al.  Journal of Geophysical Research , 1949, Nature.