A generic top-level mechanism for accelerating signal recovery in compressed sensing

Abstract Compressed Sensing (CS) is challenged by the computational complexity associated with signal recovery, especially in applications that involve recovering high-dimensional signals. We present an efficient mechanism based on divide-and-conquer principle for accelerating CS signal recovery with minimal impact on recovery quality. In principle, the proposed mechanism is applicable to any CS recovery algorithm, and achieves linear scaling between recovery time and sensed signal dimension in most cases. In addition to analytic performance guarantees, several numerical experiments were performed to verify the performance of the proposed mechanism. A sample result reports average recovery time improvement by a factor above 50 for recovering a 128 × 128 test image. This mechanism contributes to reducing recovery time, power consumption and the hardware cost required for CS signal recovery.

[1]  David L. Donoho,et al.  Solution of l1Minimization Problems by LARS/Homotopy Methods , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[2]  Ely Porat,et al.  Approximate Sparse Recovery: Optimizing Time and Measurements , 2012, SIAM J. Comput..

[3]  Zheng Fu,et al.  A Blind Adaptive Matching Pursuit Algorithm for Compressed Sensing Based on Divide and Conquer , 2012 .

[4]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[5]  Deanna Needell,et al.  Signal Recovery From Incomplete and Inaccurate Measurements Via Regularized Orthogonal Matching Pursuit , 2007, IEEE Journal of Selected Topics in Signal Processing.

[6]  Sharifah Kamilah Syed Yusof,et al.  Recovery error bounds on compressed sensing of noisy signals , 2015, Int. J. Commun. Syst..

[7]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[8]  Jeffrey J. McConnell Analysis of Algorithms , 2001 .

[9]  Justin K. Romberg,et al.  Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals , 2009, IEEE Transactions on Information Theory.

[10]  Sudipto Guha,et al.  Near-optimal sparse fourier representations via sampling , 2002, STOC '02.

[11]  Fan Zhang,et al.  Verification Decoding of High-Rate LDPC Codes With Applications in Compressed Sensing , 2009, IEEE Transactions on Information Theory.

[12]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[13]  Jean-Marie Bonnin,et al.  Wireless sensor networks: a survey on recent developments and potential synergies , 2013, The Journal of Supercomputing.

[14]  Jared Tanner,et al.  GPU accelerated greedy algorithms for compressed sensing , 2013, Mathematical Programming Computation.

[15]  Jared Tanner,et al.  Performance comparisons of greedy algorithms in compressed sensing , 2015, Numer. Linear Algebra Appl..

[16]  Kannan Ramchandran,et al.  Recovering K-sparse N-length vectors in O(K log N) time: Compressed sensing using sparse-graph codes , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[17]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[18]  Toshiyuki Tanaka,et al.  A User's Guide to Compressed Sensing for Communications Systems , 2013, IEICE Trans. Commun..

[19]  Yunhao Liu,et al.  Big Data: A Survey , 2014, Mob. Networks Appl..

[20]  J. Tropp,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, Commun. ACM.

[21]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[22]  R. Vershynin,et al.  One sketch for all: fast algorithms for compressed sensing , 2007, STOC '07.

[23]  Volkan Cevher,et al.  Model-Based Compressive Sensing , 2008, IEEE Transactions on Information Theory.

[24]  Okan K. Ersoy,et al.  Real discrete Fourier transform , 1985, IEEE Trans. Acoust. Speech Signal Process..

[25]  Wenyao Xu,et al.  A Configurable Energy-Efficient Compressed Sensing Architecture With Its Application on Body Sensor Networks , 2016, IEEE Transactions on Industrial Informatics.

[26]  Jean-Luc Starck,et al.  Astronomical Data Analysis and Sparsity: From Wavelets to Compressed Sensing , 2009, Proceedings of the IEEE.

[27]  Thomas Blumensath,et al.  Accelerated iterative hard thresholding , 2012, Signal Process..

[28]  D. L. Donoho,et al.  Compressed sensing , 2006, IEEE Trans. Inf. Theory.

[29]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[30]  Mineichi Kudo,et al.  Performance analysis of minimum /spl lscr//sub 1/-norm solutions for underdetermined source separation , 2004, IEEE Transactions on Signal Processing.

[31]  Stephen J. Wright,et al.  Computational Methods for Sparse Solution of Linear Inverse Problems , 2010, Proceedings of the IEEE.

[32]  Michael Elad,et al.  RIP-Based Near-Oracle Performance Guarantees for SP, CoSaMP, and IHT , 2012, IEEE Transactions on Signal Processing.

[33]  K. Krishnamoorthy Handbook of statistical distributions with applications , 2006 .

[34]  Stephen P. Boyd,et al.  An Interior-Point Method for Large-Scale $\ell_1$-Regularized Least Squares , 2007, IEEE Journal of Selected Topics in Signal Processing.

[35]  R. DeVore,et al.  Instance-optimality in probability with an ℓ1-minimization decoder , 2009 .

[36]  Tinoosh Mohsenin,et al.  Accelerating compressive sensing reconstruction OMP algorithm with CPU, GPU, FPGA and domain specific many-core , 2015, 2015 IEEE International Symposium on Circuits and Systems (ISCAS).

[37]  S. Mallat,et al.  Adaptive greedy approximations , 1997 .

[38]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[39]  I. Daubechies,et al.  Accelerated Projected Gradient Method for Linear Inverse Problems with Sparsity Constraints , 2007, 0706.4297.

[40]  Athanasios V. Vasilakos,et al.  CDC: Compressive Data Collection for Wireless Sensor Networks , 2015, IEEE Transactions on Parallel and Distributed Systems.

[41]  S. Mallat A wavelet tour of signal processing , 1998 .

[42]  Piotr Indyk,et al.  A fast approximation algorithm for tree-sparse recovery , 2014, 2014 IEEE International Symposium on Information Theory.

[43]  Tomoyoshi Shimobaba,et al.  GPU-accelerated compressive holography. , 2016, Optics express.

[44]  Vahid Tarokh,et al.  Compressed sensing reconstruction for whole‐heart imaging with 3D radial trajectories: A graphics processing unit implementation , 2013, Magnetic resonance in medicine.

[45]  Olgica Milenkovic,et al.  Subspace Pursuit for Compressive Sensing Signal Reconstruction , 2008, IEEE Transactions on Information Theory.

[46]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[47]  José Mario Martínez,et al.  Spectral Projected Gradient Methods: Review and Perspectives , 2014 .

[48]  Joel A. Tropp,et al.  Algorithmic linear dimension reduction in the l_1 norm for sparse vectors , 2006, ArXiv.

[49]  Paolo Rocca,et al.  Compressive Sensing in Electromagnetics - A Review , 2015, IEEE Antennas and Propagation Magazine.

[50]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[51]  Dimitris Achlioptas,et al.  Database-friendly random projections , 2001, PODS.

[52]  Joel A. Tropp,et al.  Just relax: convex programming methods for identifying sparse signals in noise , 2006, IEEE Transactions on Information Theory.

[53]  K. R. Rao,et al.  The Transform and Data Compression Handbook , 2000 .

[54]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[55]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[56]  Yonina C. Eldar,et al.  Noise Folding in Compressed Sensing , 2011, IEEE Signal Processing Letters.

[57]  S. Kirolos,et al.  Analog-to-Information Conversion via Random Demodulation , 2006, 2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software.

[58]  Richard G. Baraniuk,et al.  Sudocodes ߝ Fast Measurement and Reconstruction of Sparse Signals , 2006, 2006 IEEE International Symposium on Information Theory.

[59]  Kannan Ramchandran,et al.  Sub-linear time compressed sensing using sparse-graph codes , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[60]  Babak Hassibi,et al.  Summary based structures with improved sublinear recovery for compressed sensing , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[61]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[62]  Richard G. Baraniuk,et al.  Theory and Implementation of an Analog-to-Information Converter using Random Demodulation , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[63]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[64]  Yue Wang,et al.  A Two-Step Compressed Spectrum Sensing Scheme for Wideband Cognitive Radios , 2010, 2010 IEEE Global Telecommunications Conference GLOBECOM 2010.

[65]  Mary Wootters,et al.  New constructions of RIP matrices with fast multiplication and fewer rows , 2012, SODA.

[66]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[67]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[68]  Emil Y Sidky,et al.  Compressive sensing in medical imaging. , 2015, Applied optics.

[69]  Guosheng Rui,et al.  Divide and conquer method for sparsity estimation within compressed sensing framework , 2014 .