Energy Efficient ECC Encryption Using ECDH

Elliptic curve cryptography (ECC) provides a secure means of exchanging keys among communicating hosts using the Diffie–Hellman (DH) key exchange algorithm. This work presents an implementation of ECC encryption making use of the DH key exchange algorithm. Encryption and decryption of text messages have also been attempted. In ECC, we normally start with mapping a character of message to an affine point on the elliptic curve, which is called encoding. A comparison of the proposed algorithm and Koblitz’s method shows that the proposed algorithm is as secure as Koblitz’s encoding and has less computational complexity due to the elimination of encoding, thereby improving energy efficiency of the crypto-system to be used in resource constrained applications, such as wireless sensor networks (WSNs). It is almost infeasible to attempt a brute force attack. The security strength of the algorithm is proportional to key length. As the key length increases, the data that can be sent at a time also increase.