Transposable element detection from whole genome sequence data

[1]  Kai Ye,et al.  Detecting dispersed duplications in high-throughput sequencing data using a database-free approach , 2016, Bioinform..

[2]  J. V. Moran,et al.  A 3' Poly(A) Tract Is Required for LINE-1 Retrotransposition. , 2015, Molecules and Cells.

[3]  Elizabeth Hénaff,et al.  Jitterbug: somatic and germline transposon insertion detection at single-nucleotide resolution , 2015, BMC Genomics.

[4]  Gabor T. Marth,et al.  An integrated map of structural variation in 2,504 human genomes , 2015, Nature.

[5]  Alexa B. R. McIntyre,et al.  Extensive sequencing of seven human genomes to characterize benchmark reference materials , 2015, Scientific Data.

[6]  Anna-Sophie Fiston-Lavier,et al.  A call for benchmarking transposable element annotation methods , 2015, Mobile DNA.

[7]  Joshua M. Stuart,et al.  Combining tumor genome simulation with crowdsourcing to benchmark somatic single-nucleotide-variant detection , 2015, Nature Methods.

[8]  Stefan Engelen,et al.  Genome assembly using Nanopore-guided long and error-free DNA reads , 2015, BMC Genomics.

[9]  Renyi Liu,et al.  ITIS, a bioinformatics tool for accurate identification of transposon insertion sites using next-generation sequencing data , 2015, BMC Bioinformatics.

[10]  N. Loman,et al.  A complete bacterial genome assembled de novo using only nanopore sequencing data , 2015, Nature Methods.

[11]  Benedict Paten,et al.  Improved data analysis for the MinION nanopore sequencer , 2015, Nature Methods.

[12]  Stefan Engelen,et al.  TE-Tracker: systematic identification of transposition events through whole-genome resequencing , 2014, BMC Bioinformatics.

[13]  Mark J. P. Chaisson,et al.  Resolving the complexity of the human genome using single-molecule sequencing , 2014, Nature.

[14]  Ashfaq A. Mir,et al.  euL1db: the European database of L1HS retrotransposon insertions in humans , 2014, Nucleic Acids Res..

[15]  Kai Ye,et al.  Mobster: accurate detection of mobile element insertions in next generation sequencing data , 2014, Genome Biology.

[16]  Andrew Menzies,et al.  Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes , 2014, Science.

[17]  C. Feschotte,et al.  Spy: A New Group of Eukaryotic DNA Transposons without Target Site Duplications , 2014, Genome biology and evolution.

[18]  S. Quake,et al.  Linkage disequilibrium and signatures of positive selection around LINE-1 retrotransposons in the human genome , 2014, Proceedings of the National Academy of Sciences.

[19]  Gad Getz,et al.  Somatic retrotransposition in human cancer revealed by whole-genome and exome sequencing , 2014, Genome research.

[20]  Zhiping Weng,et al.  TEMP: a computational method for analyzing transposable element polymorphism in populations , 2014, Nucleic acids research.

[21]  Maite G. Barrón,et al.  T-lex2: genotyping, frequency estimation and re-annotation of transposable elements using single or pooled next-generation sequencing data , 2014, bioRxiv.

[22]  Anna Tramontano,et al.  Critical assessment of methods of protein structure prediction (CASP) — round x , 2014, Proteins.

[23]  G. Weinstock,et al.  TIGRA: A targeted iterative graph routing assembler for breakpoint assembly , 2014, Genome research.

[24]  Yun S. Song,et al.  SMaSH: a benchmarking toolkit for human genome variant calling , 2013, Bioinform..

[25]  Yutaka Okumoto,et al.  The Use of RelocaTE and Unassembled Short Reads to Produce High-Resolution Snapshots of Transposable Element Generated Diversity in Rice , 2013, G3: Genes, Genomes, Genetics.

[26]  L. Jorde,et al.  Mobile element biology: new possibilities with high-throughput sequencing. , 2013, Trends in genetics : TIG.

[27]  H. Hakonarson,et al.  Low concordance of multiple variant-calling pipelines: practical implications for exome and genome sequencing , 2013, Genome Medicine.

[28]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[29]  Li Ding,et al.  Retrotransposition of gene transcripts leads to structural variation in mammalian genomes , 2013, Genome Biology.

[30]  Thomas M. Keane,et al.  RetroSeq: transposable element discovery from next-generation sequencing data , 2013, Bioinform..

[31]  D. Largaespada,et al.  Extensive somatic L1 retrotransposition in colorectal tumors , 2012, Genome research.

[32]  Alexander Platzer,et al.  TE-Locate: A Tool to Locate and Group Transposable Element Occurrences Using Paired-End Next-Generation Sequencing Data , 2012, Biology.

[33]  Lovelace J. Luquette,et al.  Landscape of Somatic Retrotransposition in Human Cancers , 2012, Science.

[34]  Martin S. Taylor,et al.  Poly(A) Binding Protein C1 Is Essential for Efficient L1 Retrotransposition and Affects L1 RNP Formation , 2012, Molecular and Cellular Biology.

[35]  Michael C. Schatz,et al.  Genomic dark matter: the reliability of short read mapping illustrated by the genome mappability score , 2012, Bioinform..

[36]  Thomas M. Keane,et al.  The genomic landscape shaped by selection on transposable elements across 18 mouse strains , 2012, Genome Biology.

[37]  Casey M. Bergman,et al.  Whole Genome Resequencing Reveals Natural Target Site Preferences of Transposable Elements in Drosophila melanogaster , 2012, PloS one.

[38]  H. Kazazian,et al.  Pathogenic orphan transduction created by a nonreference LINE‐1 retrotransposon , 2012, Human mutation.

[39]  David G. Knowles,et al.  Fast Computation and Applications of Genome Mappability , 2012, PloS one.

[40]  Jef D Boeke,et al.  Retrotransposon Ty1 integration targets specifically positioned asymmetric nucleosomal DNA segments in tRNA hotspots. , 2012, Genome research.

[41]  J. V. Moran,et al.  LINE-1 elements in structural variation and disease. , 2011, Annual review of genomics and human genetics.

[42]  Adrian M. Stütz,et al.  A Comprehensive Map of Mobile Element Insertion Polymorphisms in Humans , 2011, PLoS genetics.

[43]  G. Faulkner Retrotransposons: Mobile and mutagenic from conception to death , 2011, FEBS letters.

[44]  Deniz Yorukoglu,et al.  Alu repeat discovery and characterization within human genomes. , 2011, Genome research.

[45]  H. Kazazian,et al.  Whole-genome resequencing allows detection of many rare LINE-1 insertion alleles in humans. , 2011, Genome research.

[46]  Bradley P. Coe,et al.  Genome structural variation discovery and genotyping , 2011, Nature Reviews Genetics.

[47]  M. Frith,et al.  Adaptive seeds tame genomic sequence comparison. , 2011, Genome research.

[48]  D. Petrov,et al.  T-lex: a program for fast and accurate assessment of transposable element presence using next-generation sequencing data , 2010, Nucleic acids research.

[49]  L. Mularoni,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:DNA transposon Hermes inserts into DNA in nucleosome-free regions in vivo , 2010 .

[50]  H. Kazazian,et al.  High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes. , 2010, Genome research.

[51]  Jinchuan Xing,et al.  Mobile element scanning (ME-Scan) by targeted high-throughput sequencing , 2010, BMC Genomics.

[52]  Andrew F. Neuwald,et al.  Natural Mutagenesis of Human Genomes by Endogenous Retrotransposons , 2010, Cell.

[53]  Evan E. Eichler,et al.  LINE-1 Retrotransposition Activity in Human Genomes , 2010, Cell.

[54]  D. Valle,et al.  Mobile Interspersed Repeats Are Major Structural Variants in the Human Genome , 2010, Cell.

[55]  E. Lerat Identifying repeats and transposable elements in sequenced genomes: how to find your way through the dense forest of programs , 2010, Heredity.

[56]  Faraz Hach,et al.  Next-generation VariationHunter: combinatorial algorithms for transposon insertion discovery , 2010, Bioinform..

[57]  Ira M. Hall,et al.  Genome-wide mapping and assembly of structural variant breakpoints in the mouse genome. , 2010, Genome research.

[58]  H. Levin,et al.  High-throughput sequencing of retrotransposon integration provides a saturated profile of target activity in Schizosaccharomyces pombe. , 2010, Genome research.

[59]  E. Kirkness,et al.  Mobile elements create structural variation: analysis of a complete human genome. , 2009, Genome research.

[60]  S. Bridges,et al.  Empirical comparison of ab initio repeat finding programs , 2008, Nucleic acids research.

[61]  Casey M. Bergman,et al.  Discovering and detecting transposable elements in genome sequences , 2007, Briefings Bioinform..

[62]  Philip M. Kim,et al.  Paired-End Mapping Reveals Extensive Structural Variation in the Human Genome , 2007, Science.

[63]  Jonathan Perreault,et al.  RTAnalyzer: a web application for finding new retrotransposons and detecting L1 retrotransposition signatures , 2007, Nucleic Acids Res..

[64]  J. V. Moran,et al.  Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres , 2007, Nature.

[65]  Deepak Grover,et al.  dbRIP: A highly integrated database of retrotransposon insertion polymorphisms in humans , 2006, Human mutation.

[66]  T. Heidmann,et al.  Role of poly(A) tail length in Alu retrotransposition. , 2005, Genomics.

[67]  Mark Gerstein,et al.  Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. , 2003, Genome research.

[68]  A. Pavlícek,et al.  Length distribution of long interspersed nucleotide elements (LINEs) and processed pseudogenes of human endogenous retroviruses: implications for retrotransposition and pseudogene detection. , 2002, Gene.

[69]  Jef D Boeke,et al.  Molecular archeology of L1 insertions in the human genome , 2002, Genome Biology.

[70]  Lisa Deininger,et al.  Active Alu element "A-tails": size does matter. , 2002, Genome research.

[71]  J. V. Moran,et al.  Genomic Deletions Created upon LINE-1 Retrotransposition , 2002, Cell.

[72]  Giovanni Parmigiani,et al.  Human L1 Retrotransposition Is Associated with Genetic Instability In Vivo , 2002, Cell.

[73]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[74]  E. Ostertag,et al.  Twin priming: a proposed mechanism for the creation of inversions in L1 retrotransposition. , 2001, Genome research.

[75]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[76]  Thierry Heidmann,et al.  Human LINE retrotransposons generate processed pseudogenes , 2000, Nature Genetics.

[77]  M. Boguski,et al.  Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. , 2000, Genome research.

[78]  E. Ostertag,et al.  Transduction of 3'-flanking sequences is common in L1 retrotransposition. , 2000, Human molecular genetics.

[79]  J. V. Moran,et al.  Exon shuffling by L1 retrotransposition. , 1999, Science.

[80]  J. V. Moran,et al.  The impact of L1 retrotransposons on the human genome , 1998, Nature Genetics.

[81]  Jef D Boeke,et al.  High Frequency Retrotransposition in Cultured Mammalian Cells , 1996, Cell.

[82]  T. Eickbush,et al.  Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: A mechanism for non-LTR retrotransposition , 1993, Cell.

[83]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[84]  S. Antonarakis,et al.  Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man , 1988, Nature.

[85]  T. Eickbush,et al.  The site-specific ribosomal DNA insertion element R1Bm belongs to a class of non-long-terminal-repeat retrotransposons , 1988, Molecular and cellular biology.

[86]  G. Grimaldi,et al.  Defining the beginning and end of KpnI family segments. , 1984, The EMBO journal.

[87]  W. Gerlach,et al.  Molecular Analysis of Ds Controlling Element Mutations at the Adh1 Locus of Maize , 1984, Science.

[88]  H. Döring,et al.  DNA sequence of the maize transposable element Dissociation , 1984, Nature.

[89]  E. Geiduschek,et al.  Analysis of transcription of the human Alu family ubiquitous repeating element by eukaryotic RNA polymerase III. , 1981, Nucleic acids research.

[90]  B. Mcclintock The origin and behavior of mutable loci in maize , 1950, Proceedings of the National Academy of Sciences.

[91]  Piero Carninci,et al.  Edinburgh Research Explorer Endogenous Retrotransposition Activates Oncogenic Pathways in Hepatocellular Carcinoma Endogenous Retrotransposition Activates Oncogenic Pathways in Hepatocellular Carcinoma , 2022 .

[92]  Gary D Bader,et al.  Long read nanopore sequencing for detection of and HLA variants and haplotypes CYP 2 D 6 , 2015 .

[93]  T. Speed,et al.  Comparing somatic mutation-callers: beyond Venn diagrams , 2013, BMC Bioinformatics.

[94]  Miriam K. Konkel,et al.  Computational methods for the analysis of primate mobile elements. , 2010, Methods in molecular biology.

[95]  Richard Cordaux,et al.  Estimating the retrotransposition rate of human Alu elements. , 2006, Gene.

[96]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[97]  M. Batzer,et al.  LSU Digital Commons LSU Digital Commons Mobile element scanning (ME-Scan) identifies thousands of novel Mobile element scanning (ME-Scan) identifies thousands of novel Alu insertions in diverse human populations Alu insertions in diverse human populations , 2022 .

[98]  Miriam K. Konkel,et al.  Tangram: a comprehensive toolbox for mobile element insertion detection , 2014, BMC Genomics.