Thermal conductivity of microporous layers: Analytical modeling and experimental validation

Abstract A new compact relationship is developed for the thermal conductivity of the microporous layer (MPL) used in polymer electrolyte fuel cells as a function of pore size distribution, porosity, and compression pressure. The proposed model is successfully validated against experimental data obtained from a transient plane source thermal constants analyzer. The thermal conductivities of carbon paper samples with and without MPL were measured as a function of load (1–6 bars) and the MPL thermal conductivity was found between 0.13 and 0.17 W m −1  K −1 . The proposed analytical model predicts the experimental thermal conductivities within 5%. A correlation generated from the analytical model was used in a multi objective genetic algorithm to predict the pore size distribution and porosity for an MPL with optimized thermal conductivity and mass diffusivity. The results suggest that an optimized MPL, in terms of heat and mass transfer coefficients, has an average pore size of 122 nm and 63% porosity.

[1]  M. G. Kaganer,et al.  Thermal Insulation in Cryogenic Engineering , 1969 .

[2]  S. Jennings,et al.  The mean free path in air , 1988 .

[3]  R. Borup,et al.  Influence of the microporous layer on carbon corrosion in the catalyst layer of a polymer electrolyte membrane fuel cell , 2012 .

[4]  T. Schubert,et al.  Enhancement of proton exchange membrane fuel cell performance by doping microporous layers of gas diffusion layers with multiwall carbon nanotubes , 2012 .

[5]  Walter K. Nader,et al.  Prediction of transport processes within porous media: Diffusive flow processes within an homogeneous swarm of spherical particles , 1973 .

[6]  G. Dotelli,et al.  Effect of different substrates, inks composition and rheology on coating deposition of microporous layer (MPL) for PEM-FCs , 2009 .

[7]  S. V. Sotirchos,et al.  Ordinary and transition regime diffusion in random fiber structures , 1993 .

[8]  J. Taylor An Introduction to Error Analysis , 1982 .

[9]  Chin Tsau Hsu,et al.  Modified Zehner-Schlunder models for stagnant thermal conductivity of porous media , 1994 .

[10]  Xianguo Li,et al.  Through-plane thermal conductivity of the microporous layer in a polymer electrolyte membrane fuel cell , 2012 .

[11]  Js Kwon Jae-Sung Kwon,et al.  Effective thermal conductivity of various filling materials for vacuum insulation panels , 2009 .

[12]  Xianguo Li,et al.  Experimental measurement of effective diffusion coefficient of gas diffusion layer/microporous layer in PEM fuel cells , 2012 .

[13]  J. Barbera,et al.  Contact mechanics , 1999 .

[14]  Xiao-Dong Wang,et al.  Optimal microporous layer for proton exchange membrane fuel cell , 2010 .

[15]  Ned Djilali,et al.  Micro-porous layer stochastic reconstruction and transport parameter determination , 2015 .

[16]  Wayne Moore,et al.  Effect of Pore Structure, Randomness and Size on Effective Mass Diffusivity , 2002 .

[17]  H. S. Carslow,et al.  Conduction of Heat in Solids, Second Edition , 1986 .

[18]  Eunsook Lee,et al.  Development of a novel hydrophobic/hydrophilic double micro porous layer for use in a cathode gas di , 2011 .

[19]  Toshiaki Konomi,et al.  Microporous layer coated gas diffusion layers for enhanced performance of polymer electrolyte fuel cells , 2010 .

[20]  Xianguo Li,et al.  Correlation for the Effective Gas Diffusion Coefficient in Carbon Paper Diffusion Media , 2009 .

[21]  J. Pharoah,et al.  Thermal conductivity and temperature profiles of the micro porous layers used for the polymer electrolyte membrane fuel cell , 2013 .

[22]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[23]  Adam Z. Weber,et al.  Effects of Microporous Layers in Polymer Electrolyte Fuel Cells , 2005 .

[24]  N. Djilali,et al.  A statistically-based thermal conductivity model for fuel cell Gas Diffusion Layers , 2013 .

[25]  T. Nejat Veziroğlu,et al.  Polymer electrolyte fuel cell degradation , 2012 .

[26]  E. Kjeang,et al.  A customized framework for 3-D morphological characterization of microporous layers , 2013 .

[27]  Rui Chen,et al.  3D reconstruction of a gas diffusion layer and a microporous layer , 2010 .

[28]  Chao-Yang Wang,et al.  Two-Phase Transport in Polymer Electrolyte Fuel Cells with Bilayer Cathode Gas Diffusion Media , 2005 .

[29]  N. Djilali,et al.  Effect of Polytetrafluoroethylene (PTFE) and micro porous layer (MPL) on thermal conductivity of fuel cell gas diffusion layers: Modeling and experiments , 2014 .

[30]  Majid Bahrami,et al.  Thermal Joint Resistances of Conforming Rough Surfaces with Gas-Filled Gaps , 2004 .

[31]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[32]  M. Bahrami,et al.  An analytical relationship for calculating the effective diffusivity of micro-porous layers , 2015 .