Chromium (VI) Separation from Aqueous Solution Using Anion Exchange Membrane

The preparation is reported of a chemically modified crosslinked poly(methyl methacrylate–ethylene glycol dimethacrylate) (PMMA–EGDM) copolymer anion exchange ultrafiltration membrane on a macroporous clay support. This is obtained by nitrating a PMMA–EGDM membrane using NOx (a mixture of NO and NO2), which is further reduced to an amine group using hydrazine hydrate to form an anion-exchange membrane (AEM). The membrane thus formed is characterized for its properties such as ion-exchange capacity, membrane swelling, contact angle measurements, and membrane morphologies. The results show that the membrane becomes highly hydrophilic on the introduction of a charge and the separation experiments on the chromium (VI) salt solution show that the permeate flux (keeping the same rejection level of 90%) is considerably increased (by 100-fold). The analysis of separation of Cr(VI) from its aqueous solution has been done by solving a two-dimensional (in cylindrical coordinates) space-charge model (SCM). A series solution of the nonlinear Poisson–Boltzmann equation has been generated, which leads to a considerable reduction in the computational time (from 15 h of batch time using the method reported earlier to 15 min for our method). The effective pore radius and wall potential of the unmodified and AEMs are evaluated by fitting the experimental data of the separation. The permeate flux calculated from this model matches well with the experimental values and a correlation is developed between the separation characteristic (rejection) and the wall charge developed by the chemical modification of the membrane. © 2005 American Institute of Chemical Engineers AIChE J, 2005

[1]  I. Gancarz,et al.  Modification of polysulfone membranes 1. CO2 plasma treatment , 1999 .

[2]  D. Bhattacharyya,et al.  Charged membrane ultrafiltration of heavy metal salts: Application to metal recovery and water reuse , 1976 .

[3]  H. Ohya,et al.  Preparation of anion-exchange membrane based on block copolymers. Part 1. Amination of the chloromethylated copolymers , 1998 .

[4]  J. Smit,et al.  The application of the space-charge model to the permeability properties of charged microporous membranes , 1985 .

[5]  Haruhiko Ohya,et al.  Preparation of anion exchange membrane based on block copolymers. Part II: the effect of the formation of macroreticular structure on the membrane properties , 1998 .

[6]  I. Gancarz,et al.  Modification of polysulfone membranes. 4. Ammonia plasma treatment , 2002 .

[7]  Gopal Pugazhenthi,et al.  Enzyme membrane reactor for hydrolysis of olive oil using lipase immobilized on modified PMMA composite membrane , 2004 .

[8]  Shoji Kimura,et al.  Electrolyte transport through nanofiltration membranes by the space-charge model and the comparison with Teorell-Meyer- Sievers model , 1995 .

[9]  Anilesh Kumar,et al.  Separation characteristics of modified polysulfone ultrafiltration membranes using NOx , 2001 .

[10]  E. Drioli,et al.  Quality improvement of recycled chromium in the tanning operation by membrane processes , 1997 .

[11]  Y. Kiso Rejection properties of alkyl phthalates with nanofiltration membranes , 2001 .

[12]  Ruben G. Carbonell,et al.  Transport of electrolytes in charged pores: Analysis using the method of spatial averaging , 1989 .

[13]  Anilesh Kumar,et al.  Effect of chemical modifications upon exchange capacity of aminated macroporous styrene–divinyl benzene (PS–DVB) copolymer anion exchange resin , 2001 .

[14]  Anilesh Kumar,et al.  Modeling of separation of aqueous solutions of FeCl3 and AlCl3 by zeolite-clay composite membranes using a space-charge model. , 2004, Journal of Colloid and Interface Science.

[15]  A. R. Cooper Ultrafiltration membranes and applications , 1981 .

[16]  S. Nakao,et al.  Plasma-graft filling polymerization: preparation of a new type of pervaporation membrane for organic liquid mixtures , 1991 .

[17]  T. Miyata,et al.  Permeation and separation of benzenecyclohexane mixtures through cross-linked poly(alkyl methacrylate) membranes , 1997 .

[18]  Ashwani Kumar,et al.  Preparation of NOx modified PMMA-EGDM composite membrane for the recovery of chromium (VI) , 2003 .

[19]  R. W. Baird Enhancement of resistance of polyethylene to seawater-promoted degradation by surface modification , 1982 .

[20]  Kun-Hong Lee,et al.  Surface modification of polysulfone ultrafiltration membrane by oxygen plasma treatment , 2002 .

[21]  K. Meyer,et al.  La perméabilité des membranes I. Théorie de la perméabilité ionique , 1936 .

[22]  I. Gancarz,et al.  Modification of polysulfone membranes. 2. Plasma grafting and plasma polymerization of acrylic acid , 1999 .

[23]  I. Gancarz,et al.  Modification of polysulfone membranes: 3. effect of nitrogen plasma , 2000 .

[24]  H. Schwarz,et al.  Novel high performance photo-graft composite membranes for separation of organic liquids by pervaporation , 1997 .

[25]  J. Lai,et al.  Formation and gas flux of asymmetric PMMA membranes , 1996 .

[26]  T. Hirotsu Water‐ethanol separation by pervaporation through plasma graft polymerized membranes , 1987 .

[27]  Ain A. Sonin,et al.  Osmosis and Ion Transport in Charged Porous Membranes: A Macroscopic, Mechanistic Model , 1976 .

[28]  T. Nakane,et al.  Preparation and pervaporation performance of polyimide composite membrane by vapor deposition and polymerization (VDP) , 1997 .

[29]  Shin-ichi Nakao,et al.  Separation of linear hydrocarbons and carboxylic acids from ethanol and hexane solutions by reverse osmosis , 2001 .

[30]  T. Xu,et al.  Fundamental studies of a new series of anion exchange membranes: membrane preparation and characterization , 2001 .

[31]  Naohiro Terasawa,et al.  Plasma polymerization of cyclic perfluoroamines and composite membranes for gas separation , 1996 .

[32]  James M. Dickson,et al.  A new class of polyelectrolyte-filled microfiltration membranes with environmentally controlled porosity , 1995 .

[33]  Ken-ichi Okamoto,et al.  The Esterification of Oleic Acid with Ethanol Accompanied by Membrane Separation , 1987 .

[34]  Robert H. Davis,et al.  Microfiltration of protein-cell mixtures with crossflushing or backflushing , 2001 .

[35]  Anilesh Kumar,et al.  Effect of gas phase modification of analcime zeolite composite membrane on separation of surfactant by ultrafiltration , 2002 .

[36]  B. Breslau,et al.  Advances in Hollow Fiber Ultrafiltration Technology , 1980 .

[37]  S. Nunes,et al.  Ultrafiltration membranes from PVDF/PMMA blends , 1992 .

[38]  G. He,et al.  Preparation and performance of cellulose acetate/polyethyleneimine blend microfiltration membranes and their applications , 2004 .

[39]  Anilesh Kumar,et al.  Preparation of high capacity weak base poly(methyl methacrylate)–ethylene glycol dimethylacrylate copolymer anion exchange resin by modification using NOx , 2003 .

[40]  S. Datta,et al.  Simulation of unstirred batch ultrafiltration process based on a reversible pore-plugging model , 2000 .

[41]  R. Probstein,et al.  Brackish water salt rejection by porous hyperfiltration membranes , 1973 .

[42]  T. Sata,et al.  Preparation and properties of anion exchange membranes having pyridinium or pyridinium derivatives as anion exchange groups , 1998 .

[43]  J. F. Osterle,et al.  Membrane transport characteristics of ultrafine capillaries. , 1968, The Journal of chemical physics.

[44]  K. Peinemann,et al.  Novel polyamide composite membranes for gas separation prepared by interfacial polycondensation , 1997 .

[45]  Robert B. Grieves,et al.  Separation of Toxic Heavy Metals by Sulfide Precipitation , 1979 .

[46]  M. Rezac,et al.  Preparation of polymer–ceramic composite membranes with thin defect‐free separating layers , 1992 .

[47]  Mangala Joshi,et al.  Development of a new styrene copolymer membrane for recycling of polyester fibre dyeing effluent , 2001 .

[48]  O. Kedem,et al.  Hyperfiltration in charged membranes: the fixed charge model , 1967 .

[49]  Torsten Teorell,et al.  An Attempt to Formulate a Quantitative Theory of Membrane Permeability , 1935 .

[50]  Nobuharu Takai,et al.  Fundamental study of noncross-linking anion exchange membranes , 1994 .

[51]  Eli Ruckenstein,et al.  Electrolyte osmosis through capillaries , 1981 .

[52]  M. Dhahbi,et al.  Removal of chromate anions by micellar-enhanced ultrafiltration using cationic surfactants☆ , 2001 .

[53]  A. Foissy,et al.  Streaming potential, electroviscous effect, pore conductivity and membrane potential for the determination of the surface potential of a ceramic ultrafiltration membrane , 2003 .

[54]  J. K. Nelson,et al.  Composite Cellulose-Acetate Poly(Methyl Methacrylate) Blend Gas Separation Membranes , 1994 .

[55]  E. Sanders,et al.  Penetrant-plasticized permeation in polymethylmethacrylate , 1992 .

[56]  Anilesh Kumar,et al.  Analysis of separation of chromic acid by zeolite–clay composite membrane using space-charge model , 2004 .

[57]  C. V. Oss,et al.  Interfacial Forces in Aqueous Media , 1994 .

[58]  J. Lai,et al.  Factors affecting the nodule size of asymmetric PMMA membranes , 2001 .

[59]  M. Pizzichini,et al.  Chromium(III) salts recovery process from tannery wastewaters , 1997 .

[60]  E. Ruckenstein,et al.  Viscoelectric effects in reverse osmosis , 1981 .