Robustness of the absolute Rosenau–Hyman |K|(p,

[1]  F. R. Villatoro,et al.  Compacton-anticompacton collisions in the Rosenau–Hyman K(p,p) , 2022, Communications in Nonlinear Science and Numerical Simulation.

[2]  A. Iqbal,et al.  Generalized compacton equation, conservation laws and exact solutions , 2021, Chaos, Solitons & Fractals.

[3]  P. Rosenau,et al.  Compactons , 2018, Journal of Physics A: Mathematical and Theoretical.

[4]  P. Rosenau,et al.  Loss of regularity in the K(m,n) equations , 2017, 1709.03322.

[5]  D. Ambrose,et al.  Traveling waves and weak solutions for an equation with degenerate dispersion , 2013 .

[6]  Francisco R. Villatoro,et al.  Removing trailing tails and delays induced by artificial dissipation in Padé numerical schemes for stable compacton collisions , 2012, Appl. Math. Comput..

[7]  Francisco R. Villatoro,et al.  Numerical interactions between compactons and kovatons of the Rosenau-Pikovsky K(cos) equation , 2012, Commun. Nonlinear Sci. Numer. Simul..

[8]  Avadh Saxena,et al.  Properties of compacton-anticompacton collisions. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  D. Ambrose,et al.  Ill-posedness of degenerate dispersive equations , 2011, 1104.2571.

[10]  Avadh Saxena,et al.  Stability and dynamical properties of Rosenau-Hyman compactons using Padé approximants. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Francisco R. Villatoro,et al.  A repository of equations with cosine/sine compactons , 2009, Appl. Math. Comput..

[12]  Magdy A. El-Tawil,et al.  A numerical study of adding an artificial dissipation term for solving the nonlinear dispersive equations K(n, n) , 2009, J. Comput. Appl. Math..

[13]  Victor A. Galaktionov,et al.  Third-order nonlinear dispersive equations: Shocks, rarefaction, and blowup waves , 2008 .

[14]  Francisco R. Villatoro,et al.  Padé numerical method for the Rosenau-Hyman compacton equation , 2007, Math. Comput. Simul..

[15]  Francisco R. Villatoro,et al.  Self-similar radiation from numerical Rosenau-Hyman compactons , 2007, J. Comput. Phys..

[16]  M. S. Ismail,et al.  A numerical study of compactons , 1998 .

[17]  M. A. López-Marcos,et al.  A Finite Difference Scheme for the K(2, 2) Compacton Equation , 1995 .

[18]  Hyman,et al.  Compactons: Solitons with finite wavelength. , 1993, Physical review letters.