Plant polymer as sensing material: Exploring environmental sensitivity of dielectric properties using interdigital capacitors at ultra high frequency

Abstract An interdigital capacitor (IDC) system was designed in order to provide a controlled high exposure (high surface/thickness ratio) to the environmental atmosphere of a sensing layer of which the dielectric properties were identified by a finite element method simulation and validated using a common parallel plate capacitor technique. The dielectric properties of one of the most sensitive and widely available plant polymers in nature: wheat gluten (WG) proteins were determined at ultra high frequency (500 MHz–1000 MHz) at 25 °C and at two different values of relative humidity (RH). Increasing relative humidity from 20% RH to 80% RH increased the dielectric loss and permittivity of wheat gluten from 0.39 ± 0.01 to 0.84 ± 0.02 and from 5.01 ± 0.06 to 7.07 ± 0.18, respectively. This effect was discussed in the light of wheat gluten composition (constituting amino acids), structure (high molecular weight, proteins unfolding and mobility) and water content (adsorbed water-bonding state). In addition to RH, two other analytes known as food quality markers, carbon dioxide (CO2) and ethanol were studied in terms of sensitivity. The sensitivities of 10.0 ± 0.4 fF/%RH, 31.38 ± 0.06 fF/%CO2 and 25.50 ± 0.05 pF/%ethanol obtained should pave the way for the development of innovative green radio frequency identification (RFID) tags using renewable, cheap and biodegradable plant polymers as gas and vapor sensors. The sensors are intended to be interfaced to low-cost, ultra high frequency, passive, RFID tags for monitoring food quality and freshness volatile markers in packaging headspace.

[1]  A. Chistyakov The permittivity of water and water vapor in saturation states , 2007 .

[2]  A. Werker,et al.  Thermal properties and crystallization behavior of fractionated blocky and random polyhydroxyalkanoate copolymers from mixed microbial cultures , 2014 .

[3]  A. Sombra,et al.  On the dielectric behaviour of collagen-algal sulfated polysaccharide blends: effect of glutaraldehyde crosslinking. , 2006, Biophysical chemistry.

[4]  Andrea Scorzoni,et al.  Ultra-low-power components for an RFID Tag with physical and chemical sensors , 2008 .

[5]  Louise Slade,et al.  Glass transitions in starch, gluten and bread as measured , 1996 .

[6]  Nathalie Gontard,et al.  Edible Wheat Gluten Films: Influence of the Main Process Variables on Film Properties using Response Surface Methodology , 1992 .

[7]  S. Barringer,et al.  The dielectric properties of whey protein as indicators of change in polymer mobility , 1995 .

[8]  S. Ryynänen,et al.  The electromagnetic properties of food materials: a review of the basic principles , 1995 .

[9]  T. Aussenac,et al.  Size Characterisation of Glutenin Polymers by HPSEC-MALLS , 2001 .

[10]  J R Peacock,et al.  Millimetre wave permittivity of water near 25 °C , 2009 .

[11]  Andrea Scorzoni,et al.  Flexible tag microlab development: Gas sensors integration in RFID flexible tags for food logistic , 2007 .

[12]  J. Dubois Propriétés diélectriques des polymères , 1998 .

[13]  M. Satyam,et al.  Dielectric constant variation of polystyrene-graphite composite material with temperature , 1996 .

[14]  A. Gennadios Protein-Based Films and Coatings , 2002 .

[15]  L. Capitán-Vallvey,et al.  Screen printed flexible radiofrequency identification tag for oxygen monitoring. , 2013, Analytical chemistry.

[16]  S. Kaya,et al.  Frequency dependent electrical characteristics of BiFeO3 MOS capacitors , 2014 .

[17]  R. Igreja,et al.  Analytical evaluation of the interdigital electrodes capacitance for a multi-layered structure , 2004 .

[18]  Ioannis S. Arvanitoyannis,et al.  Application of Modified Atmosphere Packaging and Active/Smart Technologies to Red Meat and Poultry: A Review , 2012, Food and Bioprocess Technology.

[19]  Ning Yan,et al.  RFID tags for wireless electrochemical detection of volatile chemicals , 2013 .

[20]  Frank Devlieghere,et al.  Intelligent food packaging: the next generation , 2014 .

[21]  Eduard Llobet,et al.  An RFID reader with onboard sensing capability for monitoring fruit quality , 2007 .

[22]  Alberto J. Palma,et al.  Design and characterization of a low thermal drift capacitive humidity sensor by inkjet-printing , 2014 .

[23]  Francis Menil,et al.  Influence of the electrodes configuration on a differential capacitive rain sensor performances , 2006 .

[24]  L. Ruiz-Garcia,et al.  The role of RFID in agriculture: Applications, limitations and challenges , 2011 .

[25]  Eduard Llobet,et al.  Drop-coated sensing layers on ultra low power hotplates for an RFID flexible tag microlab , 2010 .

[26]  Pieter Hoekstra,et al.  Dielectric relaxation of surface adsorbed water , 1971 .

[27]  Nathalie Gontard,et al.  Influence of Relative Humidity and Film Composition on Oxygen and Carbon Dioxide Permeabilities of Edible Films , 1996 .

[28]  N. Gontard,et al.  Water and Glycerol as Plasticizers Affect Mechanical and Water Vapor Barrier Properties of an Edible Wheat Gluten Film , 1993 .

[29]  R. Dudley Evolutionary Origins of Human Alcoholism in Primate Frugivory , 2000, The Quarterly Review of Biology.

[30]  Keat Ghee Ong,et al.  A Wireless, Passive Sensor for Quantifying Packaged Food Quality , 2007, Sensors.

[31]  Victor van Acht,et al.  4.5.2 Development of printed RFID sensor tags for smart food packaging , 2012 .

[32]  E. Martuscelli,et al.  Physical properties of polystyrene/alum composites , 2004 .

[33]  Seung Ju Lee,et al.  Intelligent Packaging for Food Products , 2014 .

[34]  Beatrys M. Lacquet,et al.  A new electrical circuit model for porous dielectric humidity sensors , 1993 .

[35]  Craig A. Grimes,et al.  Room Temperature Ammonia and Humidity Sensing Using Highly Ordered Nanoporous Alumina Films , 2002 .

[36]  K. Fukao,et al.  Dielectric relaxation of isotactic polystyrene above the glass transition temperature , 1993 .

[37]  Christopher L. Davey,et al.  The dielectric properties of biological cells at radiofrequencies : Applications in biotechnology , 1999 .

[38]  N. Gontard,et al.  Glass transition of wheat gluten plasticized with water, glycerol, or sorbitol. , 1999, Journal of agricultural and food chemistry.

[39]  A. V. Itterbeek,et al.  Mesures sur la constante diélectrique de quelques gaz non polaires (H2, D2, He, O2 et l'air) et CO entre la température ordinaire et 20° abs , 1943 .

[40]  C. Realini,et al.  Active and intelligent packaging systems for a modern society. , 2014, Meat science.

[41]  N. Gontard,et al.  Edible Wheat Gluten Film: Influence of Water Content on Glass Transition Temperature , 1996 .

[42]  Craig A. Grimes,et al.  Remote Query Resonant-Circuit Sensors for Monitoring of Bacteria Growth: Application to Food Quality Control , 2002 .

[43]  R. Dudley Ethanol, Fruit Ripening, and the Historical Origins of Human Alcoholism in Primate Frugivory1 , 2004, Integrative and comparative biology.

[44]  Maria Smolander,et al.  Freshness Indicators for Food Packaging , 2008 .

[45]  U. Weimar,et al.  Capacitive Humidity Sensors on Flexible RFID Labels , 2007, TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference.

[46]  L. C. Haynes,et al.  Microwave Permittivities Of Cracker Dough, Starch and Gluten , 1995 .

[47]  J. Ahmed,et al.  Dynamic viscoelastic, calorimetric and dielectric characteristics of wheat protein isolates , 2008 .

[48]  Zhanhu Guo,et al.  Magnetic Polystyrene Nanocomposites Reinforced with Magnetite Nanoparticles , 2014 .

[49]  S. Sahin,et al.  Physical properties of foods , 2006 .

[50]  P. Chalier,et al.  Determination of mass transport properties in food/packaging systems by local measurement with Raman microspectroscopy , 2014 .

[51]  N. Gontard,et al.  Oxygen and Carbon Dioxide Permeability of Wheat Gluten Film: Effect of Relative Humidity and Temperature , 1997 .

[52]  P. Belton,et al.  Hydration of gluten: a dielectric, calorimetric, and fourier transform infrared study. , 2007, Biomacromolecules.

[53]  J. Delcour,et al.  Molecular basis of processing wheat gluten toward biobased materials. , 2010, Biomacromolecules.

[54]  Mats Stading,et al.  Plasticization of zein: a thermomechanical, FTIR, and dielectric study. , 2009, Biomacromolecules.

[55]  Hyunchul Park,et al.  Capacitive humidity sensor design based on anodic aluminum oxide , 2009 .

[56]  T. Z. Rizvi,et al.  Temperature-dependent dielectric properties of slightly hydrated horn keratin. , 2008, International journal of biological macromolecules.

[57]  Ivana Murković Steinberg,et al.  Wireless smart tag with potentiometric input for ultra low-power chemical sensing , 2013 .

[58]  G.S.V. Raghavan,et al.  An Overview of Microwave Processing and Dielectric Properties of Agri-food Materials , 2004 .

[59]  Francisco Molina-Lopez,et al.  All additive inkjet printed humidity sensors on plastic substrate , 2012 .

[60]  José Sánchez,et al.  Influence of relative humidity on carbon dioxide sorption in wheat gluten films , 2006 .