Topological Properties of the Pessimistic Multigranulation Rough Set Model

Multigranulation rough set theory is a newly proposed mathematical tool for dealing with inexact, uncertain or vague information. This paper concerns the topological properties of pessimistic multigranulation rough sets. It is shown that the collection of definable sets in pessimistic rough set model determines a clopen topology on the universe. Furthermore, it forms a Boolean algebra under the usual set-theoretic operations.

[1]  Bobby Schmidt,et al.  Fuzzy math , 2001 .

[2]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[3]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[4]  Yiyu Yao,et al.  Two views of the theory of rough sets in finite universes , 1996, Int. J. Approx. Reason..

[5]  Lingyun Yang,et al.  Topological properties of generalized approximation spaces , 2011, Inf. Sci..

[6]  Mihir K. Chakraborty,et al.  A Geometry of Approximation: Rough Set Theory: Logic, Algebra and Topology of Conceptual Patterns , 2008 .

[7]  Yiyu Yao,et al.  MGRS: A multi-granulation rough set , 2010, Inf. Sci..

[8]  Andrzej Skowron,et al.  Tolerance Approximation Spaces , 1996, Fundam. Informaticae.

[9]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[10]  Gianpiero Cattaneo,et al.  An Investigation About Rough Set Theory: Some Foundational and Mathematical Aspects , 2011, Fundam. Informaticae.

[11]  Yee Leung,et al.  Theory and applications of granular labelled partitions in multi-scale decision tables , 2011, Inf. Sci..

[12]  Michiro Kondo,et al.  On the structure of generalized rough sets , 2006, Inf. Sci..

[13]  D. Dubois,et al.  ROUGH FUZZY SETS AND FUZZY ROUGH SETS , 1990 .

[14]  Daniel Vanderpooten,et al.  A Generalized Definition of Rough Approximations Based on Similarity , 2000, IEEE Trans. Knowl. Data Eng..

[15]  Yiyu Yao,et al.  Relational Interpretations of Neigborhood Operators and Rough Set Approximation Operators , 1998, Inf. Sci..

[16]  Md. Aquil Khan,et al.  Formal reasoning with rough sets in multiple-source approximation systems , 2008, Int. J. Approx. Reason..

[17]  Jiye Liang,et al.  Incomplete Multigranulation Rough Set , 2010, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[18]  Wen-Xiu Zhang,et al.  An axiomatic characterization of a fuzzy generalization of rough sets , 2004, Inf. Sci..

[19]  H. M. Abu-Donia,et al.  Multi knowledge based rough approximations and applications , 2012, Knowl. Based Syst..

[20]  Zheng Pei,et al.  On the topological properties of fuzzy rough sets , 2005, Fuzzy Sets Syst..

[21]  William Zhu,et al.  The algebraic structures of generalized rough set theory , 2008, Inf. Sci..

[22]  Yiyu Yao,et al.  Constructive and Algebraic Methods of the Theory of Rough Sets , 1998, Inf. Sci..

[23]  William Zhu,et al.  Topological approaches to covering rough sets , 2007, Inf. Sci..

[24]  William Zhu,et al.  Generalized rough sets based on relations , 2007, Inf. Sci..

[25]  Ping Zhu,et al.  Covering rough sets based on neighborhoods: An approach without using neighborhoods , 2009, Int. J. Approx. Reason..

[26]  Wei-Zhi Wu,et al.  Generalized fuzzy rough sets , 2003, Inf. Sci..

[27]  Daowu Pei,et al.  A generalized model of fuzzy rough sets , 2005, Int. J. Gen. Syst..

[28]  Fei-Yue Wang,et al.  Reduction and axiomization of covering generalized rough sets , 2003, Inf. Sci..

[29]  T. Iwiński Algebraic approach to rough sets , 1987 .