Sympathy: fast exact minimization of fixed polarity Reed-Muller expressions for symmetric functions

In this paper a polynomial time algorithm for the minimization of Fixed Polarity Reed-Muller Expressions (FPRMs) for totally symmetric functions based on Ordered Functional Decision Diagrams (OFDDs) is presented. A generalization to partially symmetric functions is investigated. The algorithm has been implemented as the program Sympathy. Experimental results in comparison to previously published methods are given to show the efficiency of the approach.

[1]  S. Hurst Detection of symmetries in combinatorial functions by spectral means , 1977 .

[2]  M. Perkowski,et al.  Multiple valued input generalised Reed-Muller forms , 1992 .

[3]  Marek A. Perkowski,et al.  Fast exact and quasi-minimal minimization of highly testable fixed-polarity AND/XOR canonical networks , 1992, [1992] Proceedings 29th ACM/IEEE Design Automation Conference.

[4]  Rolf Drechsler,et al.  Synthesis for testability: circuits derived from ordered Kronecker functional decision diagrams , 1995, Proceedings the European Design and Test Conference. ED&TC 1995.

[5]  Marek Perkowski,et al.  Design For Testability Properties of AND/XOR Networks , 1993 .

[6]  Rolf Drechsler,et al.  Efficient Representation and Manipulation of Switching Functions Based on Ordered Kronecker Functional Decision Diagrams , 1994, 31st Design Automation Conference.

[7]  Malgorzata Marek-Sadowska,et al.  Detecting Symmetric Variables in Boolean Functions using Generalized Reel-Muller Forms , 1994, ISCAS.

[8]  Marek A. Perkowski,et al.  Fast minimization of mixed-polarity AND/XOR canonical networks , 1992, Proceedings 1992 IEEE International Conference on Computer Design: VLSI in Computers & Processors.

[9]  Bernd Becker,et al.  Fast OFDD based minimization of fixed polarity Reed-Muller expressions , 1994, EURO-DAC '94.

[10]  Tsutomu Sasao,et al.  On the complexity of mod-2l sum PLA's , 1990 .

[11]  J. M. Saul Logic synthesis for arithmetic circuits using the Reed-Muller representation , 1992, [1992] Proceedings The European Conference on Design Automation.

[12]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[13]  Michael Weber,et al.  Detection of symmetry of Boolean functions represented by ROBDDs , 1993, ICCAD.

[14]  Irith Pomeranz,et al.  On determining symmetries in inputs of logic circuits , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[15]  SUDHAKAR M. REDDY,et al.  Easily Testable Realizations ror Logic Functions , 1972, IEEE Transactions on Computers.

[16]  Wolfgang Rosenstiel,et al.  Multilevel logic synthesis based on functional decision diagrams , 1992, [1992] Proceedings The European Conference on Design Automation.

[17]  Malgorzata Marek-Sadowska,et al.  Efficient minimization algorithms for fixed polarity AND/XOR canonical networks , 1993, [1993] Proceedings Third Great Lakes Symposium on VLSI-Design Automation of High Performance VLSI Systems.

[18]  Malgorzata Marek-Sadowska,et al.  Boolean Matching Using Generalized Reed-Muller Forms , 1994, 31st Design Automation Conference.