Thickness‐Dependent Elastic Softening of Few‐Layer Free‐Standing MoSe2

Few‐layer van der Waals (vdW) materials have been extensively investigated in terms of their exceptional electronic, optoelectronic, optical, and thermal properties. Simultaneously, a complete evaluation of their mechanical properties remains an undeniable challenge due to the small lateral sizes of samples and the limitations of experimental tools. In particular, there is no systematic experimental study providing unambiguous evidence on whether the reduction of vdW thickness down to few layers results in elastic softening or stiffening with respect to the bulk. In this work, micro‐Brillouin light scattering is employed to investigate the anisotropic elastic properties of single‐crystal free‐standing 2H‐MoSe2 as a function of thickness, down to three molecular layers. The so‐called elastic size effect, that is, significant and systematic elastic softening of the material with decreasing numbers of layers is reported. In addition, this approach allows for a complete mechanical examination of few‐layer membranes, that is, their elasticity, residual stress, and thickness, which can be easily extended to other vdW materials. The presented results shed new light on the ongoing debate on the elastic size‐effect and are relevant for performance and durability of implementation of vdW materials as resonators, optoelectronic, and thermoelectric devices.

[1]  B. Jia,et al.  Diffraction-limited imaging with monolayer 2D material-based ultrathin flat lenses , 2020, Light: Science & Applications.

[2]  R. Ruoff,et al.  Impact of Grain Boundaries on the Elastic Behavior of Transferred Polycrystalline Graphene , 2020 .

[3]  Artur R. Davoyan,et al.  Hybrid exciton-plasmon-polaritons in van der Waals semiconductor gratings , 2019, Nature Communications.

[4]  Z. Nourbakhsh,et al.  Structural, Electronic, Mechanical, Thermodynamic, and Linear and Nonlinear Optical Properties of MoS2, MoSe2, and their MoS2xSe2(1−x) Alloys: Ab Initio Calculations , 2019, Journal of Electronic Materials.

[5]  G. Xie,et al.  Two-dimensional layered materials: from mechanical and coupling properties towards applications in electronics. , 2019, Nanoscale.

[6]  A. Bruchhausen,et al.  The lifetime of interlayer breathing modes of few-layer 2H-MoSe2 membranes. , 2019, Nanoscale.

[7]  B. Djafari-Rouhani,et al.  Brillouin light scattering under one-dimensional confinement: Symmetry and interference self-canceling , 2019, Physical Review B.

[8]  A. Isacsson,et al.  Optomechanical Measurement of Thermal Transport in Two-Dimensional MoSe2 Lattices. , 2019, Nano letters.

[9]  R. Fischer,et al.  Ultralow thermal conductivity of turbostratically disordered MoSe2 ultra-thin films and implications for heterostructures , 2019, Nanotechnology.

[10]  A. Castellanos-Gómez,et al.  Revisiting the Buckling Metrology Method to Determine the Young's Modulus of 2D Materials , 2019, Advanced materials.

[11]  D. Baranov,et al.  Self-Hybridized Exciton-Polaritons in Multilayers of Transition Metal Dichalcogenides for Efficient Light Absorption , 2018, ACS Photonics.

[12]  A. Bruchhausen,et al.  Dimensional crossover of acoustic phonon lifetime in $2H$-MoSe$_2$. , 2018, 1810.04467.

[13]  Basant Chitara,et al.  Elastic properties and breaking strengths of GaS, GaSe and GaTe nanosheets. , 2018, Nanoscale.

[14]  E. Reed,et al.  Elastic properties of bulk and low-dimensional materials using Van der Waals density functional. , 2018, Physical review. B.

[15]  G. Carlotti Elastic characterization of transparent and opaque films, multilayers and acoustic resonators by surface Brillouin scattering: A review , 2018, 1908.11106.

[16]  M. Placidi,et al.  Elastic Properties of Few Nanometers Thick Polycrystalline MoS2 Membranes: A Nondestructive Study. , 2017, Nano letters.

[17]  P. Jarillo-Herrero,et al.  Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. , 2017, Chemical Society reviews.

[18]  P G Steeneken,et al.  Nonlinear dynamic characterization of two-dimensional materials , 2017, Nature Communications.

[19]  A. Eftekhari Molybdenum diselenide (MoSe2) for energy storage, catalysis, and optoelectronics , 2017 .

[20]  A. Minnich,et al.  Elastic and thermal properties of free-standing molybdenum disulfide membranes measured using ultrafast transient grating spectroscopy , 2017 .

[21]  R. Ruoff,et al.  Mechanical properties of atomically thin boron nitride and the role of interlayer interactions , 2017, Nature Communications.

[22]  D. Mandrus,et al.  Imaging exciton–polariton transport in MoSe2 waveguides , 2017, Nature Photonics.

[23]  Marco Amabili,et al.  Young's modulus of 2D materials extracted from their nonlinear dynamic response , 2017, 1704.05433.

[24]  C. Sheng,et al.  Exceptional elastic anisotropy of hybrid organic–inorganic perovskite CH3NH3PbBr3 measured by laser ultrasonic technique , 2016 .

[25]  Sheng Chu,et al.  Wafer-Size and Single-Crystal MoSe2 Atomically Thin Films Grown on GaN Substrate for Light Emission and Harvesting. , 2016, ACS applied materials & interfaces.

[26]  F. Koppens,et al.  High Quality Factor Mechanical Resonators Based on WSe2 Monolayers , 2016, Nano letters.

[27]  Madan Dubey,et al.  Gold‐Mediated Exfoliation of Ultralarge Optoelectronically‐Perfect Monolayers , 2016, Advanced materials.

[28]  Junqiao Wu,et al.  Mechanical properties of two-dimensional materials and heterostructures , 2016 .

[29]  Jiangbin Wu,et al.  Review on the Raman spectroscopy of different types of layered materials. , 2016, Nanoscale.

[30]  S. Banerjee,et al.  Structural and Electrical Properties of MoTe2 and MoSe2 Grown by Molecular Beam Epitaxy. , 2016, ACS applied materials & interfaces.

[31]  Young Ki Hong,et al.  High‐Mobility Transistors Based on Large‐Area and Highly Crystalline CVD‐Grown MoSe2 Films on Insulating Substrates , 2016, Advanced materials.

[32]  Haluk Yapicioglu,et al.  Thermal transport properties of MoS2 and MoSe2 monolayers , 2016, Nanotechnology.

[33]  K. Bolotin,et al.  The effect of intrinsic crumpling on the mechanics of free-standing graphene , 2015, Nature Communications.

[34]  W. Zhang 张,et al.  Electronic structures and elastic properties of monolayer and bilayer transition metal dichalcogenides MX2 (M = Mo, W; X = O, S, Se, Te): A comparative first-principles study , 2015, 1505.01640.

[35]  Yong-Wei Zhang,et al.  Giant Phononic Anisotropy and Unusual Anharmonicity of Phosphorene: Interlayer Coupling and Strain Engineering , 2015, 1502.00375.

[36]  B. Luther-Davies,et al.  Atomically thin optical lenses and gratings , 2014, Light: Science & Applications.

[37]  Franccois-Xavier Coudert,et al.  Necessary and Sufficient Elastic Stability Conditions in Various Crystal Systems , 2014, 1410.0065.

[38]  M. Prunnila,et al.  Acoustic phonon propagation in ultra-thin Si membranes under biaxial stress field , 2014 .

[39]  S. Berciaud,et al.  All-Optical Blister Test of Suspended Graphene Using Micro-Raman Spectroscopy , 2014, 1407.1938.

[40]  Z. Yin,et al.  Preparation and applications of mechanically exfoliated single-layer and multilayer MoS₂ and WSe₂ nanosheets. , 2014, Accounts of chemical research.

[41]  Vincent Meunier,et al.  First-principles Raman spectra of MoS2, WS2 and their heterostructures. , 2014, Nanoscale.

[42]  Zhi-Xun Shen,et al.  Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. , 2014, Nature nanotechnology.

[43]  Vibhor Singh,et al.  Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping , 2013, 1311.4829.

[44]  K. Chattopadhyay,et al.  Equibiaxial strain: tunable electronic structure and optical properties of bulk and monolayer MoSe2 , 2013 .

[45]  J. Coleman,et al.  Liquid Exfoliation of Layered Materials , 2013, Science.

[46]  Jun Zhang,et al.  Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. , 2013, Nano letters.

[47]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[48]  D. Yoon,et al.  Estimation of Young's modulus of graphene by Raman spectroscopy. , 2012, Nano letters.

[49]  B. Djafari-Rouhani,et al.  Phonons in slow motion: dispersion relations in ultrathin Si membranes. , 2012, Nano letters.

[50]  James Hone,et al.  Investigation of Nonlinear Elastic Behavior of Two-Dimensional Molybdenum Disulfide , 2012 .

[51]  Andres Castellanos-Gomez,et al.  Elastic Properties of Freely Suspended MoS2 Nanosheets , 2012, Advanced materials.

[52]  Andras Kis,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[53]  Changgu Lee,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[54]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[55]  Paul L. McEuen,et al.  Mechanical properties of suspended graphene sheets , 2007 .

[56]  J. Maultzsch,et al.  Elasticity of single-crystalline graphite: Inelastic x-ray scattering study , 2007 .

[57]  A. Every,et al.  The study of guided waves in surfaces and thin supported films using surface Brillouin scattering and acoustic microscopy. , 2006, Ultrasonics.

[58]  David J. Dunstan,et al.  Effective thermodynamic elastic constants under finite deformation , 2002 .

[59]  Daniele Fioretto,et al.  Brillouin scattering determination of the whole set of elastic constants of a single transparent film of hexagonal symmetry , 1995 .

[60]  S. Lindsay,et al.  Surface Brillouin Scattering from Graphite , 1990 .

[61]  T. Kuzuba,et al.  Elastic constant c44 of uniaxial layered crystals , 1989 .

[62]  M. Fischer,et al.  Elastic constants of the layered compounds Gas, GaSe, InSe, and their pressure dependence I. Experimental part , 1983 .

[63]  R. T. Harley,et al.  Surface Brillouin scattering from layered metals and semimetals , 1979 .

[64]  H. Hughes,et al.  Kramers-Kronig analysis of the reflectivity spectra of 2H-MoS2, 2H-MoSe2 and 2H-MoTe2 , 1979 .

[65]  M. Skolnick,et al.  Ultrasound measurements in the layered transition-metal dichalcogenides NbSe2 and TaS2 , 1977 .

[66]  B. Auld,et al.  Acoustic fields and waves in solids , 1973 .

[67]  O. L. Blakslee,et al.  Elastic Constants of Compression-Annealed Pyrolytic Graphite , 1970 .

[68]  P. B. James,et al.  The crystal structure of MoSe2 , 1963 .

[69]  H. Lamb On waves in an elastic plate , 1917 .

[70]  P. Ajayan,et al.  Brittle Fracture of 2D MoSe2 , 2017, Advanced materials.

[71]  G. Briggs,et al.  Surface Brillouin Scattering—Extending Surface Wave Measurements to 20 GHz , 1995 .

[72]  R. Loudon Surface Brillouin Scattering , 1981 .

[73]  J. L. Feldman Elastic constants of 2H-MoS2 and 2H-NbSe2 extracted from measured dispersion curves and linear compressibilities , 1976 .