Evidence for allosteric transitions in secondary structure induced by superhelical stress.

[1]  J. Michael Schurr,et al.  Effects of chloroquine on the torsional dynamics and rigidities of linear and supercoiled DNAs at low ionic strength , 1989, Biopolymers.

[2]  W. Christens-Barry,et al.  Raman spectroscopy of supercoiled and nicked ColE1 plasmid , 1989, Biopolymers.

[3]  M. Hao,et al.  Global equilibrium configurations of supercoiled DNA , 1989 .

[4]  S. Harvey,et al.  Molecular mechanics model of supercoiled DNA. , 1989, Journal of molecular biology.

[5]  J. Michael Schurr,et al.  Interaction of chloroquine with linear and supercoiled DNAs. Effect on the torsional dynamics, rigidity, and twist energy parameter. , 1988, Biochemistry.

[6]  J. Michael Schurr,et al.  The amplitude of local angular motions of intercalated dyes and bases in DNA , 1988, Biopolymers.

[7]  N. Cozzarelli,et al.  Helical repeat and linking number of surface-wrapped DNA. , 1988, Science.

[8]  J. Wang,et al.  DNA supercoiling in vivo. , 1988, Biophysical chemistry.

[9]  D. Lilley,et al.  The mechanism of cruciform formation in supercoiled DNA: initial opening of central basepairs in salt-dependent extrusion. , 1987, Nucleic acids research.

[10]  D. Lilley,et al.  A two-state conformational equilibrium for alternating (A-T)n sequences in negatively supercoiled DNA. , 1987, Journal of molecular biology.

[11]  B. Fujimoto,et al.  Time‐Resolved fluorescence polarization anisotropy of short restriction fragments: The friction factor for rotation of DNA about its symmetry axis , 1987, Biopolymers.

[12]  J. Langowski Salt effects on internal motions of superhelical and linear pUC8 DNA. Dynamic light scattering studies. , 1987, Biophysical chemistry.

[13]  R. Wells,et al.  The segment inversion site of herpes simplex virus type 1 adopts a novel DNA structure. , 1987, The Journal of biological chemistry.

[14]  C. Benham,et al.  Environmental influences on DNA superhelicity. The effect of ionic strength on superhelix conformation in solution. , 1987, Journal of molecular biology.

[15]  J. Langowski,et al.  Dynamics of superhelical DNA studied by photon correlation spectroscopy. , 1986, Biophysical chemistry.

[16]  D. Lilley,et al.  A dominant influence of flanking sequences on a local structural transition in DNA , 1986, Cell.

[17]  M. Wadati,et al.  Elastic model of highly supercoiled DNA , 1986, Biopolymers.

[18]  K. Schmitz,et al.  Dynamic Light Scattering Studies of Biopolymers: Effects of Charge, Shape, and Flexibility , 1986 .

[19]  D. Lilley,et al.  Facile cruciform formation by an (A-T)34 sequence from a Xenopus globin gene. , 1985, Journal of molecular biology.

[20]  J. Michael Schurr,et al.  Rotational dynamics of DNA from 10−10 to 10−5 seconds: Comparison of theory with optical experiments , 1985, Biopolymers.

[21]  Roger J. Lewis,et al.  Rotational and translational motion of supercoiled plasmids in solution , 1985 .

[22]  Pulleyblank De,et al.  A structural basis for S1 nuclease sensitivity of double-stranded DNA , 1985 .

[23]  J. Shimada,et al.  Statistical mechanics of DNA topoisomers. The helical worm-like chain. , 1985, Journal of molecular biology.

[24]  J. Michael Schurr,et al.  Change of conformation and internal dynamics of supercoiled DNA upon binding of Escherichia coli single-strand binding protein. , 1985, Biochemistry.

[25]  D. Pulleyblank,et al.  Transition of a cloned d(AT)n-d(AT)n tract to a cruciform in vivo. , 1985, Nucleic acids research.

[26]  H. Vasmel Influence of supercoiling on DNA structure: Laser Raman spectroscopy of the plasmid pBR322 , 1985, Biopolymers.

[27]  J. Michael Schurr,et al.  Deformational dynamics and nmr relaxation of supercoiled DNAs , 1985, Biopolymers.

[28]  J. Michael Schurr,et al.  Torsional dynamics and rigidity of fractionated poly(dGdC) , 1985, Biopolymers.

[29]  Y. Nishimura,et al.  Raman spectrum of a closed-circular DNA. , 1985, Biopolymers.

[30]  D. Lilley,et al.  Thermodynamics of the ColE1 cruciform. Comparisons between probing and topological experiments using single topoisomers. , 1984, Journal of molecular biology.

[31]  M. Le Bret,et al.  Twist and writhing in short circular DNAs according to first‐order elasticity , 1984, Biopolymers.

[32]  M. Le Bret Twist and writhing in short circular DNAs according to first‐order elasticity , 1984, Biopolymers.

[33]  I. Panyutin,et al.  Kinetics of cruciform formation and stability of cruciform structure in superhelical DNA. , 1984, Journal of biomolecular structure & dynamics.

[34]  J. Michael Schurr,et al.  Structures and dynamics of a supercoiled DNA. , 1984, Biochemistry.

[35]  J. Wang,et al.  Torsional rigidity of DNA and length dependence of the free energy of DNA supercoiling. , 1984, Journal of molecular biology.

[36]  J. Michael Schurr Rotational diffusion of deformable macromolecules with mean local cylindrical symmetry , 1984 .

[37]  Thomas Jc,et al.  Fluorescence depolarization and temperature dependence of the torsion elastic constant of linear phi 29 deoxyribonucleic acid. , 1983 .

[38]  R. L. Baldwin,et al.  Energetics of DNA twisting. I. Relation between twist and cyclization probability. , 1983, Journal of molecular biology.

[39]  J. Michael Schurr,et al.  Temperature dependence of the dynamic light scattering of linear ϕ29 DNA: Implications for spontaneous opening of the double‐helix , 1983, Biopolymers.

[40]  J. Michael Schurr Boundaries of the universal K3 region and plateau region of the dynamic structure factor for DNA , 1983, Biopolymers.

[41]  K. Segawa,et al.  Enhancement of polyoma virus middle T antigen tyrosine phosphorylation by epidermal growth factor , 1983, Nature.

[42]  J. Legrange,et al.  Dependence of DNA helix flexibility on base composition , 1983, Nature.

[43]  A. Courey,et al.  Cruciform formation in a negatively supercoiled DNA may be kinetically forbidden under physiological conditions , 1983, Cell.

[44]  G. Gargiulo,et al.  Escherichia coli single-strand binding protein stabilizes specific denatured sites in superhelical DNA , 1983, Nature.

[45]  A. Rich,et al.  Negatively supercoiled simian virus 40 DNA contains Z-DNA segments within transcriptional enhancer sequences , 1983, Nature.

[46]  D. Pulleyblank,et al.  Facile transition of poly[d(TG)·d(CA)] into a left-handed helix in physiological conditions , 1983, Nature.

[47]  T. Thomas,et al.  Chain flexibility and hydrodynamics of the B and Z forms of poly(dG-dC).poly(dG-dC). , 1983, Nucleic acids research.

[48]  M. Frank-Kamenetskii,et al.  Evidence of cruciform structures in superhelical DNA provided by two‐dimensional gel electrophoresis , 1983, FEBS letters.

[49]  Robert D. Wells,et al.  Left-handed Z-DNA is induced by supercoiling in physiological ionic conditions , 1982, Nature.

[50]  M. Gellert,et al.  Cruciform structures in palindromic DNA are favored by DNA supercoiling. , 1982, Journal of molecular biology.

[51]  R. J. Robbins,et al.  Torsion and bending of nucleic acids studied by subnanosecond time-resolved fluorescence depolarization of intercalated dyes , 1982 .

[52]  Yi-der Chen,et al.  Monte Carlo study of freely jointed ring polymers. II. The writhing number , 1981 .

[53]  S. Stirdivant,et al.  Left-handed DNA in restriction fragments and a recombinant plasmid , 1981, Nature.

[54]  Nikos Panayotatos,et al.  Cruciform structures in supercoiled DNA , 1981, Nature.

[55]  J. Michael Schurr,et al.  Dynamic light‐scattering studies of internal motions in DNA. III. Evidence for titratable joints associated with bound polycations , 1981, Biopolymers.

[56]  J. Michael Schurr,et al.  Torsion dynamics and depolarization of fluorescence of linear macromolecules: II. Fluorescence polarization anisotropy measurements on a clean viral φ29 DNA , 1980 .

[57]  J. Michael Schurr,et al.  Dynamic light scattering studies of internal motions in DNA. II. Clean viral DNAs , 1980, Biopolymers.

[58]  R. L. Jones,et al.  The effect of ionic strength on DNA-ligand unwinding angles for acridine and quinoline derivatives. , 1980, Nucleic acids research.

[59]  Marc Le Bret,et al.  Monte carlo computation of the supercoiling energy, the sedimentation constant, and the radius of gyration of unknotted and knotted circular DNA , 1980, Biopolymers.

[60]  M Le Bret,et al.  Monte carlo computation of the supercoiling energy, the sedimentation constant, and the radius of gyration of unknotted and knotted circular DNA , 1980, Biopolymers.

[61]  J. Michael Schurr,et al.  Dynamic light‐scattering studies of DNA. II. Effect of ionic strength on the structure and internal dynamics of viral ϕ29 DNA , 1980 .

[62]  M. Schurr,et al.  Torsion Dynamics and Depolarization of Fluorescence of Linear Macromolecules I. Theory and Application to DNAt , 1979 .

[63]  V. Anshelevich,et al.  Statistical mechanics of supercoils and the torsional stiffness of the DNA double helix , 1979, Nature.

[64]  J. Michael Schurr,et al.  Photon-correlation spectroscopy in the near ultraviolet. , 1979, Optics letters.

[65]  Bruno H. Zimm,et al.  Theory of twisting and bending of chain macromolecules; analysis of the fluorescence depolarization of DNA , 1979 .

[66]  D. Crothers,et al.  Transient electric dichroism studies of the structure of the DNA complex with intercalated drugs. , 1979, Biochemistry.

[67]  A. Campbell Conformational variation in superhelical deoxyribonucleic acid. , 1978, The Biochemical journal.

[68]  W. Bauer,et al.  Structure and reactions of closed duplex DNA. , 1978, Annual review of biophysics and bioengineering.

[69]  T. Hsieh,et al.  Thermodynamic properties of superhelical DNAs. , 1975, Biochemistry.

[70]  V. C. Bode,et al.  Ethidium binding affinity of circular lambda deoxyribonucleic acid determined fluorometrically. , 1975, The Journal of biological chemistry.

[71]  D. Pulleyblank,et al.  The sense of naturally occurring superhelices and the unwinding angle of intercalated ethidium. , 1975, Journal of molecular biology.

[72]  Sidney Udenfriend,et al.  Fluorescamine: A Reagent for Assay of Amino Acids, Peptides, Proteins, and Primary Amines in the Picomole Range , 1972, Science.

[73]  T. Lindahl,et al.  Rate of depurination of native deoxyribonucleic acid. , 1972, Biochemistry.

[74]  J. Vinograd,et al.  Sedimentation velocity behavior of closed circular SV40 DNA as a function of superhelix density, ionic strength, counterion and temperature. , 1971, Journal of molecular biology.

[75]  J. Wang,et al.  Circular dichroism of superhelical DNA , 1971, Biopolymers.

[76]  W. Bauer,et al.  Interaction of closed circular DNA with intercalative dyes. II. The free energy of superhelix formation in SV40 DNA. , 1970, Journal of molecular biology.

[77]  James H. White Self-Linking and the Gauss Integral in Higher Dimensions , 1969 .

[78]  N. Davidson,et al.  Kinetics of renaturation of DNA. , 1968, Journal of molecular biology.

[79]  S. Greer,et al.  Studies on depurination of DNA by heat. , 1962, Journal of molecular biology.