Synthetic biology: understanding biological design from synthetic circuits

An important aim of synthetic biology is to uncover the design principles of natural biological systems through the rational design of gene and protein circuits. Here, we highlight how the process of engineering biological systems — from synthetic promoters to the control of cell–cell interactions — has contributed to our understanding of how endogenous systems are put together and function. Synthetic biological devices allow us to grasp intuitively the ranges of behaviour generated by simple biological circuits, such as linear cascades and interlocking feedback loops, as well as to exert control over natural processes, such as gene expression and population dynamics.

[1]  J. Keasling,et al.  A constructed microbial consortium for biodegradation of the organophosphorus insecticide parathion , 2003, Applied Microbiology and Biotechnology.

[2]  Christophe Dugave,et al.  Cis-trans isomerization of organic molecules and biomolecules: implications and applications. , 2003, Chemical reviews.

[3]  Eduardo Sontag,et al.  Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2 , 2003, Nature Cell Biology.

[4]  Pasch,et al.  References and Notes Supporting Online Material Evolution of Hormone-receptor Complexity by Molecular Exploitation , 2022 .

[5]  Stanislas Leibler,et al.  Simpson's Paradox in a Synthetic Microbial System , 2009, Science.

[6]  M. Bennett,et al.  A fast, robust, and tunable synthetic gene oscillator , 2008, Nature.

[7]  J. Collins,et al.  DIVERSITY-BASED, MODEL-GUIDED CONSTRUCTION OF SYNTHETIC GENE NETWORKS WITH PREDICTED FUNCTIONS , 2009, Nature Biotechnology.

[8]  S. K. Desai,et al.  Genetic screens and selections for small molecules based on a synthetic riboswitch that activates protein translation. , 2004, Journal of the American Chemical Society.

[9]  Ron Weiss,et al.  Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium , 2007, Proceedings of the National Academy of Sciences.

[10]  R. Weiss,et al.  Artificial cell-cell communication in yeast Saccharomyces cerevisiae using signaling elements from Arabidopsis thaliana , 2005, Nature Biotechnology.

[11]  Jeff Hasty,et al.  A synthetic gene network for tuning protein degradation in Saccharomyces cerevisiae , 2007, Molecular systems biology.

[12]  D. Tranchina,et al.  Stochastic mRNA Synthesis in Mammalian Cells , 2006, PLoS biology.

[13]  Mat E. Barnet,et al.  A synthetic Escherichia coli predator–prey ecosystem , 2008, Molecular systems biology.

[14]  Ohsuk Kwon,et al.  Rotational On-off Switching of a Hybrid Membrane Sensor Kinase Tar-ArcB in Escherichia coli * , 2003, The Journal of Biological Chemistry.

[15]  Jeffrey W. Smith,et al.  Stochastic Gene Expression in a Single Cell , .

[16]  Peter Walter,et al.  Supporting Online Material for An ER-Mitochondria Tethering Complex Revealed by a Synthetic Biology Screen , 2009 .

[17]  Benjamin L Turner,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S3 Table S1 References Robust, Tunable Biological Oscillations from Interlinked Positive and Negative Feedback Loops , 2022 .

[18]  Timothy S. Ham,et al.  Production of the antimalarial drug precursor artemisinic acid in engineered yeast , 2006, Nature.

[19]  Ali Kinkhabwala,et al.  Uncovering cis Regulatory Codes Using Synthetic Promoter Shuffling , 2008, PloS one.

[20]  E. Raineri,et al.  Evolvability and hierarchy in rewired bacterial gene networks , 2008, Nature.

[21]  Christopher A. Voigt,et al.  Environmentally controlled invasion of cancer cells by engineered bacteria. , 2006, Journal of molecular biology.

[22]  J. Liao,et al.  Design of artificial cell-cell communication using gene and metabolic networks. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Pamela A Silver,et al.  Intron length increases oscillatory periods of gene expression in animal cells. , 2008, Genes & development.

[24]  Megan N. McClean,et al.  Signal processing by the HOG MAP kinase pathway , 2008, Proceedings of the National Academy of Sciences.

[25]  B. Roth,et al.  Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand , 2007, Proceedings of the National Academy of Sciences.

[26]  Kazuo Tatebayashi,et al.  A docking site determining specificity of Pbs2 MAPKK for Ssk2/Ssk22 MAPKKKs in the yeast HOG pathway , 2003, The EMBO journal.

[27]  A. Oudenaarden,et al.  Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences , 2008, Cell.

[28]  Federico Guillermo Cruz,et al.  Light-Activated Gene Expression , 2000 .

[29]  D. Bernardo,et al.  A Yeast Synthetic Network for In Vivo Assessment of Reverse-Engineering and Modeling Approaches , 2009, Cell.

[30]  Gabriel C. Wu,et al.  Synthetic protein scaffolds provide modular control over metabolic flux , 2009, Nature Biotechnology.

[31]  R. Milo,et al.  Oscillations and variability in the p53 system , 2006, Molecular systems biology.

[32]  T. Elston,et al.  Kinetic insulation as an effective mechanism for achieving pathway specificity in intracellular signaling networks , 2007, Proceedings of the National Academy of Sciences.

[33]  W. DeGrado,et al.  De novo design of catalytic proteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[34]  R. Shackleton A Quantitative Approach , 2005 .

[35]  G. Church,et al.  Synthetic Gene Networks That Count , 2009, Science.

[36]  Nicolas E. Buchler,et al.  On schemes of combinatorial transcription logic , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[37]  B. Séraphin,et al.  Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion , 2001, The EMBO journal.

[38]  M. Sano,et al.  Regulatory dynamics of synthetic gene networks with positive feedback. , 2006, Journal of molecular biology.

[39]  Douglas D Young,et al.  Photochemical control of biological processes. , 2007, Organic & biomolecular chemistry.

[40]  Benjamin B. Kaufmann,et al.  Contributions of low molecule number and chromosomal positioning to stochastic gene expression , 2005, Nature Genetics.

[41]  U. Alon Network motifs: theory and experimental approaches , 2007, Nature Reviews Genetics.

[42]  U. Alon,et al.  Detailed map of a cis-regulatory input function , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[43]  M. Isalan,et al.  Engineering Gene Networks to Emulate Drosophila Embryonic Pattern Formation , 2005, PLoS biology.

[44]  James E. Ferrell,et al.  Systems-Level Dissection of the Cell-Cycle Oscillator: Bypassing Positive Feedback Produces Damped Oscillations , 2005, Cell.

[45]  U. Alon,et al.  Negative autoregulation speeds the response times of transcription networks. , 2002, Journal of molecular biology.

[46]  A. van Oudenaarden,et al.  Snowdrift game dynamics and facultative cheating in yeast , 2009, Nature.

[47]  C. Wilson,et al.  Inducible regulation of the S. cerevisiae cell cycle mediated by an RNA aptamer-ligand complex. , 2001, Bioorganic & medicinal chemistry.

[48]  S. Cambridge,et al.  A caged doxycycline analogue for photoactivated gene expression. , 2006, Angewandte Chemie.

[49]  Eran Segal,et al.  From DNA sequence to transcriptional behaviour: a quantitative approach , 2009, Nature Reviews Genetics.

[50]  E. Siggia,et al.  Analysis of Combinatorial cis-Regulation in Synthetic and Genomic Promoters , 2008, Nature.

[51]  J. Ferrell,et al.  Mechanisms of specificity in protein phosphorylation , 2007, Nature Reviews Molecular Cell Biology.

[52]  Yu Tanouchi,et al.  Decoding biological principles using gene circuits. , 2009, Molecular bioSystems.

[53]  J. Stelling,et al.  A tunable synthetic mammalian oscillator , 2009, Nature.

[54]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[55]  C. Bashor,et al.  References and Notes Supporting Online Material Using Engineered Scaffold Interactions to Reshape Map Kinase Pathway Signaling Dynamics , 2022 .

[56]  Eric A. Althoff,et al.  Kemp elimination catalysts by computational enzyme design , 2008, Nature.

[57]  Gunnar von Heijne,et al.  Emulating Membrane Protein Evolution by Rational Design , 2007, Science.

[58]  E. Huq,et al.  A light-switchable gene promoter system , 2002, Nature Biotechnology.

[59]  M. Feder Robustness and Evolvability in Living Systems. Princeton Studies in Complexity.By Andreas Wagner. Princeton (New Jersey): Princeton University Press. $49.50. xv + 367 p; ill.; index. ISBN: 0–691–12240–7. 2005. , 2006 .

[60]  Andrew D Ellington,et al.  Synthetic RNA circuits. , 2007, Nature chemical biology.

[61]  Homme W Hellinga,et al.  Engineering key components in a synthetic eukaryotic signal transduction pathway , 2009, Molecular systems biology.

[62]  J. Monod,et al.  Genetic regulatory mechanisms in the synthesis of proteins. , 1961, Journal of molecular biology.

[63]  E. Cox,et al.  Real-Time Kinetics of Gene Activity in Individual Bacteria , 2005, Cell.

[64]  Peter A Beal,et al.  High-throughput screening for functional adenosine to inosine RNA editing systems. , 2006, ACS chemical biology.

[65]  Megan N. McClean,et al.  Cross-talk and decision making in MAP kinase pathways , 2007, Nature Genetics.

[66]  J. Hasty,et al.  Synthetic gene network for entraining and amplifying cellular oscillations. , 2002, Physical review letters.

[67]  E. Davidson The Regulatory Genome: Gene Regulatory Networks In Development And Evolution , 2006 .

[68]  Christopher A. Voigt,et al.  Synthetic biology: Engineering Escherichia coli to see light , 2005, Nature.

[69]  John J. Tyson,et al.  Modeling Molecular Interaction Networks with Nonlinear Ordinary Differential Equations , 2006 .

[70]  J. Gerhart,et al.  The theory of facilitated variation , 2007, Proceedings of the National Academy of Sciences.

[71]  A. Oudenaarden,et al.  Enhancement of cellular memory by reducing stochastic transitions , 2005, Nature.

[72]  Ertugrul M. Ozbudak,et al.  Regulation of noise in the expression of a single gene , 2002, Nature Genetics.

[73]  W. Lim,et al.  Docking interactions in protein kinase and phosphatase networks. , 2006, Current opinion in structural biology.

[74]  R. Weiss,et al.  Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[75]  M. Win,et al.  Higher-Order Cellular Information Processing with Synthetic RNA Devices , 2008, Science.

[76]  James J. Collins,et al.  A Tunable Genetic Switch Based on RNAi and Repressor Proteins for Regulating Gene Expression in Mammalian Cells , 2007, Cell.

[77]  Jay D. Keasling,et al.  Metabolic engineering for drug discovery and development , 2003, Nature Reviews Drug Discovery.

[78]  Farren J. Isaacs,et al.  Prediction and measurement of an autoregulatory genetic module , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[79]  Ertugrul M. Ozbudak,et al.  Multistability in the lactose utilization network of Escherichia coli , 2004, Nature.

[80]  Kevin Struhl,et al.  MAP Kinase-Mediated Stress Relief that Precedes and Regulates the Timing of Transcriptional Induction , 2004, Cell.

[81]  Kevin V Solomon,et al.  Synthetic metabolism: engineering biology at the protein and pathway scales. , 2009, Chemistry & biology.

[82]  W. Lim,et al.  Rewiring cellular morphology pathways with synthetic guanine nucleotide exchange factors , 2007, Nature.

[83]  Andrew D Ellington,et al.  Selection of fluorescent aptamer beacons that light up in the presence of zinc , 2008, Analytical and bioanalytical chemistry.

[84]  M. Elowitz,et al.  Programming gene expression with combinatorial promoters , 2007, Molecular systems biology.

[85]  Maung Nyan Win,et al.  Raw Data, Win MN, Smolke CD. 2008. Higher-order cellular information processing with synthetic RNA devices. Science. 322: 456-60. DOI: 10.1126/science.1160311 , 2009 .

[86]  Pamela A Silver,et al.  Enhancement of Cell Type Specificity by Quantitative Modulation of a Chimeric Ligand* , 2008, Journal of Biological Chemistry.

[87]  Jerome T. Mettetal,et al.  The Frequency Dependence of Osmo-Adaptation in Saccharomyces cerevisiae , 2008, Science.

[88]  Tony Pawson,et al.  Redirecting tyrosine kinase signaling to an apoptotic caspase pathway through chimeric adaptor proteins , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[89]  A. E. Tsong,et al.  Evolution of alternative transcriptional circuits with identical logic , 2006, Nature.

[90]  James R. Johnson,et al.  Oscillations in NF-κB Signaling Control the Dynamics of Gene Expression , 2004, Science.

[91]  R. Weiss,et al.  Programmed population control by cell–cell communication and regulated killing , 2004, Nature.

[92]  Farren J. Isaacs,et al.  Engineered riboregulators enable post-transcriptional control of gene expression , 2004, Nature Biotechnology.

[93]  A. Ninfa,et al.  Development of Genetic Circuitry Exhibiting Toggle Switch or Oscillatory Behavior in Escherichia coli , 2003, Cell.

[94]  J. Mattick RNA regulation: a new genetics? , 2004, Nature Reviews Genetics.

[95]  N. Friedman,et al.  Stochastic protein expression in individual cells at the single molecule level , 2006, Nature.

[96]  I. Shmulevich,et al.  Dynamic analysis of MAPK signaling using a high-throughput microfluidic single-cell imaging platform , 2009, Proceedings of the National Academy of Sciences.

[97]  M. Green,et al.  Controlling gene expression in living cells through small molecule-RNA interactions. , 1998, Science.

[98]  S. Basu,et al.  Spatiotemporal control of gene expression with pulse-generating networks. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[99]  A. van Oudenaarden,et al.  Noise Propagation in Gene Networks , 2005, Science.

[100]  J. Liao,et al.  A synthetic gene–metabolic oscillator , 2005, Nature.

[101]  P. Swain,et al.  Gene Regulation at the Single-Cell Level , 2005, Science.

[102]  W. Lim,et al.  Domains, motifs, and scaffolds: the role of modular interactions in the evolution and wiring of cell signaling circuits. , 2006, Annual review of biochemistry.

[103]  A. Wagner Robustness and Evolvability in Living Systems , 2005 .

[104]  L. Serrano,et al.  Engineering stability in gene networks by autoregulation , 2000, Nature.

[105]  S. Basu,et al.  A synthetic multicellular system for programmed pattern formation , 2005, Nature.

[106]  Chase L. Beisel,et al.  Model-guided design of ligand-regulated RNAi for programmable control of gene expression , 2008, Molecular systems biology.

[107]  P. R. Jensen,et al.  Synthetic promoter libraries--tuning of gene expression. , 2006, Trends in biotechnology.

[108]  S. Carroll,et al.  Emerging principles of regulatory evolution , 2007, Proceedings of the National Academy of Sciences.

[109]  Pamela A. Silver,et al.  Engineering a Synthetic Dual-Organism System for Hydrogen Production , 2009, Applied and Environmental Microbiology.

[110]  Michael T. Laub,et al.  Rewiring the Specificity of Two-Component Signal Transduction Systems , 2008, Cell.

[111]  M. Elowitz,et al.  Combinatorial Synthesis of Genetic Networks , 2002, Science.

[112]  C Chothia,et al.  Domains in proteins: definitions, location, and structural principles. , 1985, Methods in enzymology.

[113]  T. Hughes,et al.  Role of scaffolds in MAP kinase pathway specificity revealed by custom design of pathway-dedicated signaling proteins , 2001, Current Biology.

[114]  Alyssa M. Redding,et al.  Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol , 2008, Microbial cell factories.

[115]  B. Suess,et al.  A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. , 2004, Nucleic acids research.