Matching Recommendation Technologies and Domains

Recommender systems form an extremely diverse body of technologies and approaches. The chapter aims to assist researchers and developers to identify the recommendation technologies that are most likely to be applicable to different domains of recommendation. Unlike other taxonomies of recommender systems, our approach is centered on the question of knowledge: what knowledge does a recommender system need in order to function, and where does that knowledge come from? Different recommendation domains (books vs condominiums, for example) provide different opportunities for the gathering and application of knowledge. These considerations give rise to a mapping between domain characteristics and recommendation technologies.

[1]  Ralph Bergmann,et al.  Retrieval and Configuration of Life Insurance Policies , 2005, ICCBR.

[2]  Hendrik Blockeel,et al.  Web mining research: a survey , 2000, SKDD.

[3]  Dunja Mladenic,et al.  Feature Selection for Unbalanced Class Distribution and Naive Bayes , 1999, ICML.

[4]  David W. Aha,et al.  Mixed-Initiative Relaxation of Constraints in Critiquing Dialogues , 2007, ICCBR.

[5]  Jaideep Srivastava,et al.  Automatic personalization based on Web usage mining , 2000, CACM.

[6]  Gediminas Adomavicius,et al.  Incorporating contextual information in recommender systems using a multidimensional approach , 2005, TOIS.

[7]  Harris Wu,et al.  Harvesting social knowledge from folksonomies , 2006, HYPERTEXT '06.

[8]  Kenneth Y. Goldberg,et al.  Eigentaste: A Constant Time Collaborative Filtering Algorithm , 2001, Information Retrieval.

[9]  Paolo Avesani,et al.  An Analysis of the Use of Tags in a Blog Recommender System , 2007, IJCAI.

[10]  Loriene Roy,et al.  Content-based book recommending using learning for text categorization , 1999, DL '00.

[11]  Filippo Menczer,et al.  Bookmark Hierarchies and Collaborative Recommendation , 2006, AAAI.

[12]  Shinichi Honiden,et al.  Web Page Recommender System based on Folksonomy Mining for ITNG ’06 Submissions , 2006, Third International Conference on Information Technology: New Generations (ITNG'06).

[13]  H. Ueno,et al.  Recommending in Context : A Spreading Activation Model that is Independent of the Type of Recommender System and Its Contents , 2006 .

[14]  John Riedl,et al.  E-Commerce Recommendation Applications , 2004, Data Mining and Knowledge Discovery.

[15]  Tim Weitzel,et al.  Matching People and Jobs: A Bilateral Recommendation Approach , 2006, Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06).

[16]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[17]  Bamshad Mobasher,et al.  Introduction to intelligent techniques for Web personalization , 2007, TOIT.

[18]  Shogo Nishida,et al.  Content-based music filtering system with editable user profile , 2006, SAC.

[19]  Michael J. Pazzani,et al.  Learning and Revising User Profiles: The Identification of Interesting Web Sites , 1997, Machine Learning.

[20]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[21]  Robin D. Burke,et al.  Interactive Critiquing forCatalog Navigation in E-Commerce , 2002, Artificial Intelligence Review.

[22]  G. Takács,et al.  On the Gravity Recommendation System , 2007 .

[23]  Maria Francesca Costabile,et al.  Integrating User Data and Collaborative Filtering in a Web Recommendation System , 2001, OHS-7/SC-3/AH-3.

[24]  Robert J. Walker,et al.  Approximate Structural Context Matching: An Approach to Recommend Relevant Examples , 2006, IEEE Transactions on Software Engineering.

[25]  David McSherry,et al.  Explanation in Recommender Systems , 2005, Artificial Intelligence Review.

[26]  Robin D. Burke,et al.  Hybrid Recommender Systems: Survey and Experiments , 2002, User Modeling and User-Adapted Interaction.

[27]  John K. Debenham,et al.  Informed Recommender Agent: Utilizing Consumer Product Reviews through Text Mining , 2006, 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Workshops.

[28]  Bruce Krulwich,et al.  LIFESTYLE FINDER: Intelligent User Profiling Using Large-Scale Demographic Data , 1997, AI Mag..

[29]  Pearl Pu,et al.  A Comparative Study of Compound Critique Generation in Conversational Recommender Systems , 2006, AH.

[30]  Li Chen,et al.  Survey of Preference Elicitation Methods , 2004 .

[31]  Francesco Ricci,et al.  Travel Recommender Systems , 2002 .

[32]  Alexander Felfernig,et al.  Knowledge-based Interactive Selling of Financial Services with FSAdvisor , 2005, AAAI.

[33]  Yan Liu,et al.  Making the most of your data: KDD Cup 2007 "How Many Ratings" winner's report , 2007, SKDD.

[34]  Paul Resnick,et al.  Recommender systems , 1997, CACM.

[35]  Alexander Felfernig,et al.  Koba4MS: selling complex products and services using knowledge-based recommender technologies , 2005, Seventh IEEE International Conference on E-Commerce Technology (CEC'05).

[36]  Pádraig Cunningham,et al.  Smart Radio - Building Music Radio On the Fly , 2001 .

[37]  Boi Faltings,et al.  Conversational recommenders with adaptive suggestions , 2007, RecSys '07.

[38]  Robin Burke,et al.  Knowledge-based recommender systems , 2000 .

[39]  Barry Smyth,et al.  Exploiting Query Repetition and Regularity in an Adaptive Community-Based Web Search Engine , 2004, User Modeling and User-Adapted Interaction.

[40]  Fillia Makedon,et al.  Using singular value decomposition approximation for collaborative filtering , 2005, Seventh IEEE International Conference on E-Commerce Technology (CEC'05).

[41]  Jianchang Mao,et al.  Towards the Semantic Web: Collaborative Tag Suggestions , 2006 .

[42]  Michael J. Pazzani,et al.  User Modeling for Adaptive News Access , 2000, User Modeling and User-Adapted Interaction.

[43]  Barry Smyth,et al.  Knowledge Discovery from User Preferences in Conversational Recommendation , 2005, PKDD.

[44]  David McSherry,et al.  Explaining the Pros and Cons of Conclusions in CBR , 2004, ECCBR.

[45]  D.H. Lee,et al.  Fighting Information Overflow with Personalized Comprehensive Information Access: A Proactive Job Recommender , 2007, Third International Conference on Autonomic and Autonomous Systems (ICAS'07).

[46]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[47]  Arbee L. P. Chen,et al.  A music recommendation system based on music data grouping and user interests , 2001, CIKM '01.

[48]  Stephan Steglich,et al.  A Generic Multipurpose recommender System for Contextual Recommendations , 2007, Eighth International Symposium on Autonomous Decentralized Systems (ISADS'07).

[49]  Lora Aroyo,et al.  Providing context-aware personalization through cross-context reasoning of user modeling data , 2007 .

[50]  John Riedl,et al.  Explaining collaborative filtering recommendations , 2000, CSCW '00.

[51]  Abhinandan Das,et al.  Google news personalization: scalable online collaborative filtering , 2007, WWW '07.

[52]  Alexander G. Hauptmann Integrating and using large databases of text, images, video, and audio , 1999, IEEE Intelligent Systems and their Applications.

[53]  Jiawei Han,et al.  MultiMediaMiner: a system prototype for multimedia data mining , 1998, SIGMOD '98.

[54]  Francesco Ricci,et al.  Adaptive Recommender Systems for Travel Planning , 2008, ENTER.

[55]  Dean P. Foster,et al.  Clustering Methods for Collaborative Filtering , 1998, AAAI 1998.

[56]  Peretz Shoval,et al.  Evaluation of an ontology-content based filtering method for a personalized newspaper , 2008, RecSys '08.

[57]  Xingshe Zhou,et al.  Supporting Context-Aware Media Recommendations for Smart Phones , 2006, IEEE Pervasive Computing.

[58]  Johan Koolwaaij,et al.  Context-Aware Recommendations in the Mobile Tourist Application COMPASS , 2004, AH.

[59]  András A. Benczúr,et al.  KDD Cup 2007 task 1 winner report , 2007, SKDD.

[60]  Arkadiusz Paterek,et al.  Improving regularized singular value decomposition for collaborative filtering , 2007 .

[61]  Lior Rokach,et al.  Detection of unknown computer worms based on behavioral classification of the host , 2008, Comput. Stat. Data Anal..

[62]  Jane Cleland-Huang,et al.  Using Data Mining and Recommender Systems to Facilitate Large-Scale, Open, and Inclusive Requirements Elicitation Processes , 2008, 2008 16th IEEE International Requirements Engineering Conference.

[63]  Thomas Roth-Berghofer,et al.  Explanations and Case-Based Reasoning: Foundational Issues , 2004, ECCBR.

[64]  Ken Lang,et al.  NewsWeeder: Learning to Filter Netnews , 1995, ICML.

[65]  Alexander Felfernig,et al.  Constraint-based recommender systems: technologies and research issues , 2008, ICEC.

[66]  Martin Halvey,et al.  WWW '07: Proceedings of the 16th international conference on World Wide Web , 2007, WWW 2007.

[67]  John Riedl,et al.  Combining Collaborative Filtering with Personal Agents for Better Recommendations , 1999, AAAI/IAAI.

[68]  John Riedl,et al.  Application of Dimensionality Reduction in Recommender Systems , 2000 .

[69]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[70]  Markus Zanker,et al.  A collaborative constraint-based meta-level recommender , 2008, RecSys '08.

[71]  Lawrence Birnbaum,et al.  Information access in context , 2001, Knowl. Based Syst..

[72]  Josep Lluís de la Rosa i Esteva,et al.  A Taxonomy of Recommender Agents on the Internet , 2003, Artificial Intelligence Review.

[73]  Michael J. Pazzani,et al.  A Framework for Collaborative, Content-Based and Demographic Filtering , 1999, Artificial Intelligence Review.

[74]  Osmar R. Zaïane,et al.  Combining Usage, Content, and Structure Data to Improve Web Site Recommendation , 2004, EC-Web.