Scatter Component Analysis: A Unified Framework for Domain Adaptation and Domain Generalization

This paper addresses classification tasks on a particular target domain in which labeled training data are only available from source domains different from (but related to) the target. Two closely related frameworks, domain adaptation and domain generalization, are concerned with such tasks, where the only difference between those frameworks is the availability of the unlabeled target data: domain adaptation can leverage unlabeled target information, while domain generalization cannot. We propose Scatter Component Analyis (SCA), a fast representation learning algorithm that can be applied to both domain adaptation and domain generalization. SCA is based on a simple geometrical measure, i.e., scatter, which operates on reproducing kernel Hilbert space. SCA finds a representation that trades between maximizing the separability of classes, minimizing the mismatch between domains, and maximizing the separability of data; each of which is quantified through scatter. The optimization problem of SCA can be reduced to a generalized eigenvalue problem, which results in a fast and exact solution. Comprehensive experiments on benchmark cross-domain object recognition datasets verify that SCA performs much faster than several state-of-the-art algorithms and also provides state-of-the-art classification accuracy in both domain adaptation and domain generalization. We also show that scatter can be used to establish a theoretical generalization bound in the case of domain adaptation.

[1]  Ye Xu,et al.  Unbiased Metric Learning: On the Utilization of Multiple Datasets and Web Images for Softening Bias , 2013, 2013 IEEE International Conference on Computer Vision.

[2]  Kate Saenko,et al.  Return of Frustratingly Easy Domain Adaptation , 2015, AAAI.

[3]  Trevor Darrell,et al.  Efficient Learning of Domain-invariant Image Representations , 2013, ICLR.

[4]  Ameet Talwalkar,et al.  Foundations of Machine Learning , 2012, Adaptive computation and machine learning.

[5]  Yishay Mansour,et al.  Domain Adaptation: Learning Bounds and Algorithms , 2009, COLT.

[6]  Antonio Torralba,et al.  LabelMe: A Database and Web-Based Tool for Image Annotation , 2008, International Journal of Computer Vision.

[7]  James J. Jiang A Literature Survey on Domain Adaptation of Statistical Classifiers , 2007 .

[8]  Ivor W. Tsang,et al.  Visual Event Recognition in Videos by Learning from Web Data , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Shai Ben-David,et al.  Detecting Change in Data Streams , 2004, VLDB.

[10]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .

[11]  Mehryar Mohri,et al.  Domain adaptation and sample bias correction theory and algorithm for regression , 2014, Theor. Comput. Sci..

[12]  Bernhard Schölkopf,et al.  Correcting Sample Selection Bias by Unlabeled Data , 2006, NIPS.

[13]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[14]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[15]  Ingo Steinwart,et al.  On the Influence of the Kernel on the Consistency of Support Vector Machines , 2002, J. Mach. Learn. Res..

[16]  Mengjie Zhang,et al.  Domain Generalization for Object Recognition with Multi-task Autoencoders , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[17]  Hal Daumé,et al.  Frustratingly Easy Domain Adaptation , 2007, ACL.

[18]  Barbara Caputo,et al.  Frustratingly Easy NBNN Domain Adaptation , 2013, 2013 IEEE International Conference on Computer Vision.

[19]  Michael I. Jordan,et al.  Learning Transferable Features with Deep Adaptation Networks , 2015, ICML.

[20]  Trevor Darrell,et al.  Adapting Visual Category Models to New Domains , 2010, ECCV.

[21]  G. Griffin,et al.  Caltech-256 Object Category Dataset , 2007 .

[22]  Alexei A. Efros,et al.  Unbiased look at dataset bias , 2011, CVPR 2011.

[23]  Kristen Grauman,et al.  Connecting the Dots with Landmarks: Discriminatively Learning Domain-Invariant Features for Unsupervised Domain Adaptation , 2013, ICML.

[24]  Jianmin Wang,et al.  Transfer Learning with Graph Co-Regularization , 2012, IEEE Transactions on Knowledge and Data Engineering.

[25]  Tinne Tuytelaars,et al.  Unsupervised Visual Domain Adaptation Using Subspace Alignment , 2013, 2013 IEEE International Conference on Computer Vision.

[26]  Ivor W. Tsang,et al.  Domain Adaptation from Multiple Sources : A Domain-Dependent Regularization Approach , 2012 .

[27]  Jonathan J. Hull,et al.  A Database for Handwritten Text Recognition Research , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[29]  Cordelia Schmid,et al.  Dense Trajectories and Motion Boundary Descriptors for Action Recognition , 2013, International Journal of Computer Vision.

[30]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[31]  Benjamin Recht,et al.  Random Features for Large-Scale Kernel Machines , 2007, NIPS.

[32]  Yuesheng Xu,et al.  Universal Kernels , 2006, J. Mach. Learn. Res..

[33]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[34]  Bernhard Schölkopf,et al.  A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..

[35]  Rong Yan,et al.  Cross-domain video concept detection using adaptive svms , 2007, ACM Multimedia.

[36]  Vishal M. Patel,et al.  Joint Hierarchical Domain Adaptation and Feature Learning , 2013 .

[37]  Philip S. Yu,et al.  Transfer Joint Matching for Unsupervised Domain Adaptation , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[38]  Yuan Shi,et al.  Geodesic flow kernel for unsupervised domain adaptation , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Mengjie Zhang,et al.  Domain Adaptive Neural Networks for Object Recognition , 2014, PRICAI.

[40]  K. Johana,et al.  Benchmarking Least Squares Support Vector Machine Classifiers , 2022 .

[41]  Victor S. Lempitsky,et al.  Unsupervised Domain Adaptation by Backpropagation , 2014, ICML.

[42]  Kilian Q. Weinberger,et al.  Marginalized Denoising Autoencoders for Domain Adaptation , 2012, ICML.

[43]  Matthias W. Seeger,et al.  Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.

[44]  Koby Crammer,et al.  Analysis of Representations for Domain Adaptation , 2006, NIPS.

[45]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[46]  Jianguo Zhang,et al.  The PASCAL Visual Object Classes Challenge , 2006 .

[47]  Peter L. Bartlett,et al.  Rademacher and Gaussian Complexities: Risk Bounds and Structural Results , 2003, J. Mach. Learn. Res..

[48]  B. Scholkopf,et al.  Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[49]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[50]  Bo Geng,et al.  DAML: Domain Adaptation Metric Learning , 2011, IEEE Transactions on Image Processing.

[51]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[52]  Ivor W. Tsang,et al.  Domain Adaptation via Transfer Component Analysis , 2009, IEEE Transactions on Neural Networks.

[53]  Alexei A. Efros,et al.  Ensemble of exemplar-SVMs for object detection and beyond , 2011, 2011 International Conference on Computer Vision.

[54]  Antonio Torralba,et al.  Exploiting hierarchical context on a large database of object categories , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[55]  J. Hoffmann-jorgensen Probability in Banach Space , 1977 .

[56]  Philip S. Yu,et al.  Transfer Sparse Coding for Robust Image Representation , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[57]  John Blitzer,et al.  Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification , 2007, ACL.

[58]  Sumit Chopra,et al.  DLID: Deep Learning for Domain Adaptation by Interpolating between Domains , 2013 .

[59]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[60]  Bernhard Schölkopf,et al.  Hilbert Space Embeddings and Metrics on Probability Measures , 2009, J. Mach. Learn. Res..

[61]  Trevor Darrell,et al.  Continuous Manifold Based Adaptation for Evolving Visual Domains , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[62]  Alexei A. Efros,et al.  Undoing the Damage of Dataset Bias , 2012, ECCV.

[63]  Rama Chellappa,et al.  Visual Domain Adaptation: A survey of recent advances , 2015, IEEE Signal Processing Magazine.

[64]  Antonio Criminisi,et al.  Object categorization by learned universal visual dictionary , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[65]  Brian C. Lovell,et al.  Unsupervised Domain Adaptation by Domain Invariant Projection , 2013, 2013 IEEE International Conference on Computer Vision.

[66]  Rama Chellappa,et al.  Domain adaptation for object recognition: An unsupervised approach , 2011, 2011 International Conference on Computer Vision.

[67]  Colin McDiarmid,et al.  Surveys in Combinatorics, 1989: On the method of bounded differences , 1989 .

[68]  Hans-Peter Kriegel,et al.  Integrating structured biological data by Kernel Maximum Mean Discrepancy , 2006, ISMB.

[69]  Kate Saenko,et al.  From Virtual to Reality: Fast Adaptation of Virtual Object Detectors to Real Domains , 2014, BMVC.

[70]  Andrea Vedaldi,et al.  Vlfeat: an open and portable library of computer vision algorithms , 2010, ACM Multimedia.

[71]  Le Song,et al.  A Hilbert Space Embedding for Distributions , 2007, Discovery Science.

[72]  Bernhard Schölkopf,et al.  Domain Generalization via Invariant Feature Representation , 2013, ICML.

[73]  Cordelia Schmid,et al.  Dataset Issues in Object Recognition , 2006, Toward Category-Level Object Recognition.

[74]  Ivor W. Tsang,et al.  Domain Transfer Multiple Kernel Learning , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[75]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .

[76]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[77]  Vladimir Pavlovic,et al.  Central Subspace Dimensionality Reduction Using Covariance Operators , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[78]  John Shawe-Taylor,et al.  Smooth Operators , 2013, ICML.

[79]  Tara N. Sainath,et al.  Improving deep neural networks for LVCSR using rectified linear units and dropout , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[80]  Bernhard Schölkopf,et al.  A Kernel Method for the Two-Sample-Problem , 2006, NIPS.

[81]  Gilles Blanchard,et al.  Generalizing from Several Related Classification Tasks to a New Unlabeled Sample , 2011, NIPS.

[82]  Trevor Darrell,et al.  DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition , 2013, ICML.

[83]  Dong Xu,et al.  Exploiting Low-Rank Structure from Latent Domains for Domain Generalization , 2014, ECCV.

[84]  Le Song,et al.  A Hilbert Space Embedding for Distributions , 2007, IFIP Working Conference on Database Semantics.

[85]  Quoc V. Le,et al.  Sequence to Sequence Learning with Neural Networks , 2014, NIPS.

[86]  Ivor W. Tsang,et al.  Domain adaptation from multiple sources via auxiliary classifiers , 2009, ICML '09.

[87]  Brian C. Lovell,et al.  Domain Adaptation on the Statistical Manifold , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[88]  H. Shimodaira,et al.  Improving predictive inference under covariate shift by weighting the log-likelihood function , 2000 .

[89]  Yoshua Bengio,et al.  Domain Adaptation for Large-Scale Sentiment Classification: A Deep Learning Approach , 2011, ICML.

[90]  Rémi Ronfard,et al.  Free viewpoint action recognition using motion history volumes , 2006, Comput. Vis. Image Underst..

[91]  John Blitzer,et al.  Domain Adaptation with Structural Correspondence Learning , 2006, EMNLP.

[92]  Trevor Darrell,et al.  What you saw is not what you get: Domain adaptation using asymmetric kernel transforms , 2011, CVPR 2011.

[93]  Ivor W. Tsang,et al.  Learning With Augmented Features for Supervised and Semi-Supervised Heterogeneous Domain Adaptation , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[94]  Rama Chellappa,et al.  Generalized Domain-Adaptive Dictionaries , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.