Ion Channel Reconstitution

I. Basics.- 1 The Physical Nature of Planar Bilayer Membranes.- 2 Ion Channel Electrostatics and the Shapes of Channel Proteins.- 3 Superoxide Dismutase as a Model Ion Channel.- 4 Single-Channel Enzymology.- 5 How to Set Up a Bilayer System.- 6 Fusion of Liposomes to Planar Bilayers.- 7 Incorporation of Ion Channels by Fusion.- II. Nicotinic Acetylcholine Receptor.- 8 The Reconstituted Acetylcholine Receptor.- 9 Immunologic Analysis of the Acetylcholine Receptor.- 10 Function of Acetylcholine Receptors in Reconstituted Liposomes.- III. Sodium Channel.- 11 Skeletal Muscle Sodium Channels: Isolation and Reconstitution.- 12 Reconstitution of the Sodium Channel from Electrophorus electricus.- 13 The Reconstituted Sodium Channel from Brain.- 14 Gating of Batrachotoxin-Activated Sodium Channels in Lipid Bilayers.- 15 Ion Conduction Through Sodium Channels in Planar Lipid Bilayers.- 16 Blocking Pharmacology of Batrachotoxin-Activated Sodium Channels.- IV. Other Channels in Model Membranes.- 17 The Large Calcium-Activated Potassium Channel.- 18 The Sarcoplasmic Reticulum Potassium Channel: Lipid Effects.- 19 Characterization of Dihydropyridine-Sensitive Calcium Channels from Purified Skeletal Muscle Transverse Tubules.- 20 Calcium Channels.- 21 Phosphorylation of a Reconstituted Potassium Channel.- 22 Voltage Gating in VDAC: Toward a Molecular Mechanism.- 23 Analysis and Chemical Modification of Bacterial Porins.

[1]  P. Usherwood,et al.  Single glutamate-activated channels in locust muscle , 1979, Nature.

[2]  M. Colombini A candidate for the permeability pathway of the outer mitochondrial membrane , 1979, Nature.

[3]  R. Tsien,et al.  Mechanism of ion permeation through calcium channels , 1984, Nature.

[4]  E. Albuquerque,et al.  Batrachotoxin: Chemistry and Pharmacology , 1971, Science.

[5]  G. Kaczorowski,et al.  Characterization of verapamil binding sites in cardiac membrane vesicles. , 1984, The Journal of biological chemistry.

[6]  F. Barrantes,et al.  Functional properties of the acetylcholine receptor incorporated in model lipid membranes. Differential effects of chain length and head group of phospholipids on receptor affinity states and receptor-mediated ion translocation. , 1984, The Journal of biological chemistry.

[7]  W. Catterall,et al.  Neurotoxin binding to receptor sites associated with voltage-sensitive sodium channels in intact, lysed, and detergent-solubilized brain membranes. , 1979, The Journal of biological chemistry.

[8]  W. Catterall,et al.  Differential labeling of the alpha and beta 1 subunits of the sodium channel by photoreactive derivatives of scorpion toxin. , 1984, Biochemistry.

[9]  R. Latorre,et al.  Phospholipid bilayers made from monolayers on patch-clamp pipettes. , 1983, Biophysical journal.

[10]  W. Catterall,et al.  Reconstitution of the voltage-sensitive sodium channel of rat brain from solubilized components. , 1981, The Journal of biological chemistry.

[11]  S. Froehner,et al.  Restoration of 125I-alpha-bungarotoxin binding activity to the alpha subunit of Torpedo acetylcholine receptor isolated by gel electrophoresis in sodium dodecyl sulfate. , 1981, The Journal of biological chemistry.

[12]  W. Agnew Voltage-regulated sodium channel molecules. , 1984, Annual review of physiology.

[13]  R. Tsien,et al.  Modulation of gated ion channels as a mode of transmitter action , 1983, Trends in Neurosciences.

[14]  L. Poblete [Calcium metabolism]. , 1957, Revista chilena de pediatria.

[15]  A. Auerbach,et al.  Single-channel currents from acetylcholine receptors in embryonic chick muscle. Kinetic and conductance properties of gaps within bursts. , 1984, Biophysical journal.

[16]  U. Hopfer Isolated membrane vesicles as tools for analysis of epithelial transport. , 1977, The American journal of physiology.

[17]  F. Barrantes,et al.  Agonist-mediated changes of the acetylcholine receptor in its membrane environment. , 1978, Journal of molecular biology.

[18]  U. Pick,et al.  Liposomes with a large trapping capacity prepared by freezing and thawing of sonicated phospholipid mixtures. , 1981, Archives of biochemistry and biophysics.

[19]  G. P. Hess,et al.  Molecular mechanism of acetylcholine receptor-controlled ion translocation across cell membranes. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[20]  B. Oakley,et al.  A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. , 1980, Analytical biochemistry.

[21]  L. Wojtczak,et al.  On the impermeability of the outer mitochondrial membrane to cytochrome c. I. Studies on whole mitochondria. , 1969, Biochimica et biophysica acta.

[22]  F. Barrantes,et al.  Effects of lipids on acetylcholine receptor. Essential need of cholesterol for maintenance of agonist-induced state transitions in lipid vesicles. , 1982, Biochemistry.

[23]  T. Ferenci,et al.  Lambda Receptor in the Outer Membrane of Escherichia coli as a Binding Protein for Maltodextrins and Starch Polysaccharides , 1980, Journal of bacteriology.

[24]  C. Mannella,et al.  Evidence that the crystalline arrays in the outer membrane of Neurospora mitochondria are composed of the voltage-dependent channel protein. , 1984, Biochimica et biophysica acta.

[25]  R. Sauve,et al.  Surface potential of phosphatidylserine monolayers. I. Divalent ion binding effect. , 1978, Biochimica et biophysica acta.

[26]  R. French,et al.  Voltage-dependent block by saxitoxin of sodium channels incorporated into planar lipid bilayers. , 1984, Biophysical journal.

[27]  R Horn,et al.  Statistical properties of single sodium channels , 1984, The Journal of general physiology.

[28]  E Neher,et al.  Sodium and calcium channels in bovine chromaffin cells , 1982, The Journal of physiology.

[29]  S. Dunn,et al.  Activation and desensitization of Torpedo acetylcholine receptor: evidence for separate binding sites. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[30]  J. Rosenbusch,et al.  Matrix protein from Escherichia coli outer membranes forms voltage-controlled channels in lipid bilayers. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[31]  W. Catterall,et al.  The sodium channel from rat brain. Purification and subunit composition. , 1984, The Journal of biological chemistry.

[32]  W. Catterall Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. , 1980, Annual review of pharmacology and toxicology.

[33]  H. Ti Tien,et al.  METHODS FOR THE FORMATION OF SINGLE BIMOLECULAR LIPID MEMBRANES IN AQUEOUS SOLUTION , 1963 .

[34]  M. Nelson,et al.  Voltage-dependent calcium channels from brain incorporated into planar lipid bilayers , 1984, Nature.

[35]  Richard Fitzhugh,et al.  Statistical properties of the asymmetric random telegraph signal, with applications to single-channel analysis , 1983 .

[36]  Winfried Boos,et al.  Maltose Transport in Escherichia coli K12 , 1976 .

[37]  A. Hodgkin,et al.  The effect of sodium ions on the electrical activity of the giant axon of the squid , 1949, The Journal of physiology.

[38]  G. Vanderkooi,et al.  Evidence for boundary lipid in membranes. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[39]  T. E. Thompson,et al.  Physical properties of bilayer membranes formed from a synthetic saturated phospholipid in n-decane. , 1971, Biochimica et biophysica acta.

[40]  R. Miller,et al.  Calcium channel activation: a different type of drug action. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[41]  M. Colombini,et al.  Voltage-dependent channels found in the membrane fraction of corn mitochondria. , 1985, Plant physiology.

[42]  O. Siggaard‐Andersen,et al.  Liquid-junction potentials between plasma or erythrolysate and KCl solutions. , 1971, Scandinavian journal of clinical and laboratory investigation.

[43]  H Reuter,et al.  Sodium channels in cultured cardiac cells. , 1983, The Journal of physiology.

[44]  W. Schwarz,et al.  Properties of the CA2+-activated K+ conductance of human red cells as revealed by the patch-clamp technique. , 1983, Cell calcium.

[45]  F S Cohen,et al.  Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. I. Discharge of vesicular contents across the planar membrane , 1980, The Journal of general physiology.

[46]  A. Hodgkin,et al.  Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo , 1952, The Journal of physiology.

[47]  C F Stevens,et al.  An analysis of the dose‐response relationship at voltage‐clamped frog neuromuscular junctions. , 1978, The Journal of physiology.

[48]  R Horn,et al.  Statistical analysis of single sodium channels. Effects of N-bromoacetamide. , 1984, Biophysical journal.

[49]  P. Läuger Ion transport through pores: a rate-theory analysis. , 1973, Biochimica et biophysica acta.

[50]  W. Catterall,et al.  Inhibition of binding of [3H]batrachotoxinin A 20-alpha-benzoate to sodium channels by local anesthetics. , 1984, Molecular pharmacology.

[51]  J. G. Sarmiento,et al.  The Dihydropyridine Receptors , 1985 .

[52]  C. Armstrong Potassium pores of nerve and muscle membranes. , 1975, Membranes.

[53]  W. Jencks,et al.  On the attribution and additivity of binding energies. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[54]  R. Benz,et al.  Evidence for identity between the hexokinase-binding protein and the mitochondrial porin in the outer membrane of rat liver mitochondria. , 1982, Biochimica et biophysica acta.

[55]  P. Redfern,et al.  Action potential generation in denervated rat skeletal muscle. II. The action of tetrodotoxin. , 1971, Acta physiologica Scandinavica.

[56]  P. W. Holloway,et al.  A simple procedure for removal of Triton X-100 from protein samples. , 1973, Analytical biochemistry.

[57]  Y. Maruyama,et al.  Cholecystokinin activation of single-channel currents is mediated by internal messenger in pancreatic acinar cells , 1982, Nature.

[58]  M. McNamee,et al.  Reconstitution of acetylcholine receptor function in model membranes , 1982, Neuroscience.

[59]  F. Barrantes,et al.  Kinetics of agonist-induced intrinsic fluorescence changes in membrane-bound acetylcholine receptor , 1976, Nature.

[60]  A. Marty,et al.  Ca-dependent K channels with large unitary conductance in chromaffin cell membranes , 1981, Nature.

[61]  A. Fersht,et al.  Demonstration of two reaction pathways for the aminoacylation of tRNA. Application of the pulsed quenched flow technique. , 1975, Biochemistry.

[62]  R. Benz,et al.  An anion-selective channel from the Pseudomonas aeruginosa outer membrane , 1983 .

[63]  R Latorre,et al.  Gating kinetics of Ca2+-activated K+ channels from rat muscle incorporated into planar lipid bilayers. Evidence for two voltage- dependent Ca2+ binding reactions , 1983, The Journal of general physiology.

[64]  R. Benz,et al.  Porin activity in the osmotic shock fluid of Escherichia coli , 1978, Journal of bacteriology.

[65]  W. Agnew,et al.  Biochemical characterization of the tetrodotoxin binding protein from Electrophorus electricus. , 1982, Biochemistry.

[66]  J. Frank,et al.  Three-dimensional structure of mitochondrial outer-membrane channels from fungus and liver , 1984 .

[67]  B. Lugtenberg,et al.  Molecular architecture and functioning of the outer membrane of Escherichia coli and other gram-negative bacteria. , 1983, Biochimica et biophysica acta.

[68]  Takashi Miyata,et al.  Structural homology of Torpedo californica acetylcholine receptor subunits , 1983, Nature.

[69]  P. Gellerfors,et al.  Pore protein and the hexokinase‐binding protein from the outer membrane of rat liver mitochondria are identical , 1982, FEBS letters.

[70]  F. Yoshimura,et al.  Purification and properties of Pseudomonas aeruginosa porin. , 1983, The Journal of biological chemistry.

[71]  R. Latorre,et al.  Conduction, Blockade and Gating in a Ca -activated K Channel Incorporated into Planar Lipid Bilayers. , 1984, Biophysical journal.

[72]  D. Alkon,et al.  Protein kinase injection reduces voltage-dependent potassium currents. , 1983, Science.

[73]  B. J. Gaffney,et al.  Spin-Label Studies of Membranes , 1977 .

[74]  R. French,et al.  Single sodium channels from rat brain incorporated into planar lipid bilayer membranes , 1983, Nature.

[75]  W. Agnew,et al.  Single-channel properties of the reconstituted voltage-regulated Na channel isolated from the electroplax of Electrophorus electricus. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[76]  L. Pauling The Nature Of The Chemical Bond , 1939 .

[77]  T. Narahashi,et al.  Modification of single Na+ channels by batrachotoxin. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[78]  R. Latorre,et al.  Properties of reconstituted ion channels. , 1985, Annual review of biophysics and biophysical chemistry.

[79]  R. Latorre,et al.  Kinetics of Ca2+-activated K+ channels from rabbit muscle incorporated into planar bilayers. Evidence for a Ca2+ and Ba2+ blockade , 1983, The Journal of general physiology.

[80]  W. Catterall,et al.  Reconstitution of neurotoxin-stimulated sodium transport by the voltage-sensitive sodium channel purified from rat brain. , 1982, The Journal of biological chemistry.

[81]  P. Gellerfors,et al.  Hydrodynamic properties of porin isolated from outer membranes of rat liver mitochondria. , 1983, Biochimica et biophysica acta.

[82]  J P Changeux,et al.  Fast kinetic studies on the interaction of a fluorescent agonist with the membrane-bound acetylcholine receptor from Torpedo marmorata. , 1979, European journal of biochemistry.

[83]  R. Latorre,et al.  Reconstitution in planar lipid bilayers of a Ca2+-dependent K+ channel from transverse tubule membranes isolated from rabbit skeletal muscle. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[84]  B. Hille The pH-dependent rate of action of local anesthetics on the node of Ranvier , 1977, The Journal of general physiology.

[85]  J. Rosenbusch,et al.  Two-dimensional crystal packing of matrix porin. A channel forming protein in Escherichia coli outer membranes. , 1983, Journal of molecular biology.

[86]  E. Albuquerque,et al.  Acetylcholine receptor and ionic channel of Torpedo electroplax: binding of perhydrohistrionicotoxin to membrane and solubilized preparations. , 1978, Biochemistry.

[87]  Bert Sakmann,et al.  Geometric parameters of pipettes and membrane patches , 1983 .

[88]  B. Hille Ionic selectivity, saturation, and block in sodium channels. A four- barrier model , 1975, The Journal of general physiology.

[89]  P. C. Hinkle,et al.  Reconstitution and purification of the D-glucose transporter from human erythrocytes. , 1977, The Journal of biological chemistry.

[90]  E. Ritt,et al.  Korrelation des unspezifisch permeablen mitochondrialen Raumes mit dem „Intermembran‐Raum” , 1968 .

[91]  H. Rochat,et al.  Photoaffinity labeling of α- and β- scorpion toxin receptors associated with rat brain sodium channel , 1983 .

[92]  S. McLaughlin,et al.  Surface charge and the conductance of phospholipid membranes. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[93]  Yuichi Kanaoka,et al.  Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence , 1984, Nature.

[94]  W. Catterall,et al.  Activation of the action potential Na+ ionophore of cultured neuroblastoma cells by veratridine and batrachotoxin. , 1975, The Journal of biological chemistry.

[95]  J. Changeux,et al.  Ultraviolet light-induced labeling by noncompetitive blockers of the acetylcholine receptor from Torpedo marmorata. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[96]  R. Barchi,et al.  Size characteristics of the solubilized sodium channel saxitoxin binding site from mammalian sarcolemma. , 1980, Biochimica et biophysica acta.

[97]  D. Tank,et al.  Isolated-patch recording from liposomes containing functionally reconstituted chloride channels from Torpedo electroplax. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[98]  W. Catterall,et al.  The sodium channel from rat brain , 1986 .

[99]  W. Catterall,et al.  The sodium channel from rat brain. Separation and characterization of subunits. , 1985, The Journal of biological chemistry.

[100]  S. Hagiwara,et al.  Voltage-gated Ca2+ channel in mouse myeloma cells. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[101]  L. Hokin,et al.  Coupled Na+ -K+ transport in vesicles containing a purified (NaK)-ATPase and only phosphatidyl choline. , 1976, Biochemical and biophysical research communications.

[102]  M. Montal,et al.  Single-channel recordings from purified acetylcholine receptors reconstituted in bilayers formed at the tip of patch pipets. , 1983, Biochemistry.

[103]  M. Colombini A novel mechanism for voltage control of channel conductance. , 1984, Journal of theoretical biology.

[104]  L. Goldman,et al.  The permeability of the sodium channel in Myxicola to the alkali cations , 1976, The Journal of general physiology.

[105]  R. Keynes,et al.  Membrane potentials in the electroplates of the electric eel , 1953, The Journal of physiology.

[106]  R. Towart,et al.  Recent advances in the pharmacology of the calcium channel , 1984 .

[107]  R. Benz,et al.  Porin from bacterial and mitochondrial outer membranes. , 1985, CRC critical reviews in biochemistry.

[108]  S. M. Goldin,et al.  Formation of unilamellar lipid vesicles of controllable dimensions by detergent dialysis. , 1979, Biochemistry.

[109]  P. Comfurius,et al.  The enzymatic synthesis of phosphatidylserine and purification by CM-cellulose column chromatography. , 1977, Biochimica et biophysica acta.

[110]  I. Levitan,et al.  Modulation of single Ca2+-dependent K+-channel activity by protein phosphorylation , 1985, Nature.

[111]  J. González-Ros,et al.  Pyrenesulfonyl azide: a marker of acetylcholine receptor subunits in contact with membrane hydrophobic environment. , 1979, Biochemistry.

[112]  The secondary structure of acetylcholine receptor reconstituted in a single lipid component as determined by Raman spectroscopy. , 1984, Biophysical journal.

[113]  E. Neher,et al.  Single acetylcholine-activated channels show burst-kinetics in presence of desensitizing concentrations of agonist , 1980, Nature.

[114]  R. Benz,et al.  Outer membrane protein P of Pseudomonas aeruginosa: regulation by phosphate deficiency and formation of small anion-specific channels in lipid bilayer membranes , 1982, Journal of bacteriology.

[115]  W. B. Adams,et al.  Intracellular injection of protein kinase inhibitor blocks the serotonin-induced increase in K+ conductance in Aplysia neuron R15. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[116]  B. Khodorov,et al.  Sodium currents in voltage clamped nerve fiber of frog under the combined action of batrachotoxin and procaine , 1975, Brain Research.

[117]  C. Miller,et al.  Conduction and block by organic cations in a K+-selective channel from sarcoplasmic reticulum incorporated into planar phospholipid bilayers , 1982, The Journal of general physiology.

[118]  W. Agnew,et al.  Solubilized tetrodotoxin binding component from the electroplax of Electrophorus electricus. Stability as a function of mixed lipid-detergent micelle composition. , 1979, Biochemistry.

[119]  R. Letters The application of a two-dimensional paper-chromatographic technique to the analysis of phospholipids. , 1964, The Biochemical journal.

[120]  M. Montal Formation of bimolecular membranes from lipid monolayers. , 1974, Methods in enzymology.

[121]  M. Mishina,et al.  Expression of functional acetylcholine receptor from cloned cDNAs , 1984, Nature.

[122]  R Horn,et al.  Estimating kinetic constants from single channel data. , 1983, Biophysical journal.

[123]  W. Catterall,et al.  Purification of the saxitoxin receptor of the sodium channel from rat brain. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[124]  G. Feigenson Fluorescence quenching in model membranes. , 1982, Biophysical journal.

[125]  M. Lazdunski,et al.  Na+ channels with high and low affinity tetrodotoxin binding sites in the mammalian skeletal muscle cell. Difference in functional properties and sequential appearance during rat skeletal myogenesis. , 1983, The Journal of biological chemistry.

[126]  J. Rosenbusch Characterization of the major envelope protein from Escherichia coli. Regular arrangement on the peptidoglycan and unusual dodecyl sulfate binding. , 1974, The Journal of biological chemistry.

[127]  S. McLaughlin,et al.  Adsorption of divalent cations to bilayer membranes containing phosphatidylserine , 1981, The Journal of general physiology.

[128]  L. Hjelmeland A nondenaturing zwitterionic detergent for membrane biochemistry: design and synthesis. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[129]  A F HABEEB,et al.  Molecular structural effects produced in proteins by reaction with succinic anhydride. , 1958, Biochimica et biophysica acta.

[130]  J. Changeux,et al.  Regulation of binding properties of the nicotinic receptor protein by cholinergic ligands in membrane fragments from Torpedo marmorata. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[131]  M. McNamee,et al.  Correlation between acetylcholine receptor function and structural properties of membranes. , 1986, Biochemistry.

[132]  O. Andersen Ion movement through gramicidin A channels. Studies on the diffusion-controlled association step. , 1983, Biophysical journal.

[133]  T. Narahashi Chemicals as tools in the study of excitable membranes. , 1974, Physiological reviews.

[134]  F. Szoka,et al.  Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. , 1979, Biochimica et biophysica acta.

[135]  H. Schindler,et al.  Functional acetylcholine receptor from Torpedo marmorata in planar membranes. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[136]  M. Muir Physical Chemistry , 1888, Nature.

[137]  S. McLaughlin Electrostatic Potentials at Membrane-Solution Interfaces , 1977 .

[138]  C. Mannella Structure of the outer mitochondrial membrane: ordered arrays of porelike subunits in outer-membrane fractions from neurospora crassa mitochondria , 1982, The Journal of cell biology.

[139]  O. Andersen,et al.  Single-channel studies on linear gramicidins with altered amino acid sequences. A comparison of phenylalanine, tryptophane, and tyrosine substitutions at positions 1 and 11. , 1984, Biophysical journal.

[140]  C. Miller,et al.  Effects of phospholipid surface charge on ion conduction in the K+ channel of sarcoplasmic reticulum. , 1984, Biophysical journal.

[141]  B. Hille Ionic selectivity of Na and K channels of nerve membranes. , 1975, Membranes.

[142]  F. Sigworth,et al.  Chemical modification reduces the conductance of sodium channels in nerve , 1980, Nature.

[143]  J. Shoukimas,et al.  Blockage of squid axon potassium conductance by internal tetra-N-alkylammonium ions of various sizes. , 1981, Biophysical journal.

[144]  H. Reuter,et al.  Dihydropyridine derivatives prolong the open state of Ca channels in cultured cardiac cells. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[145]  J. Miller,et al.  Principal glycopeptide of the tetrodotoxin/saxitoxin binding protein from Electrophorus electricus: isolation and partial chemical and physical characterization. , 1983, Biochemistry.

[146]  H. Nikaido,et al.  Molecular basis of bacterial outer membrane permeability. , 1985, Microbiological reviews.

[147]  J. Rosenbusch,et al.  Three Dimensional Structure of a Membrane Pore: Electron Microscopical Analysis of Escherichia coli Outer Membrane Matrix Porin. , 1984, Biophysical journal.

[148]  M. Akabas,et al.  Osmotic swelling of phospholipid vesicles causes them to fuse with a planar phospholipid bilayer membrane. , 1982, Science.

[149]  E. Racker,et al.  The use of ion-exchange resins for studying ion transport in biological systems. , 1976, Analytical biochemistry.

[150]  R. Benz,et al.  Modification of the conductance, selectivity and concentration-dependent saturation of Pseudomonas aeruginosa protein P channels by chemical acetylation. , 1983, Biochimica et biophysica acta.

[151]  A. Maelicke,et al.  Interaction of cholinergic ligands with the purified acetylcholine receptor protein. I. Equilibrium binding studies. , 1983, The Journal of biological chemistry.

[152]  Y. Ohizumi,et al.  The amino acid sequences of homologous hydroxyproline‐containing myotoxins from the marine snal Conus geographus venom , 1983, FEBS letters.

[153]  B. Hille,et al.  Local anesthetics: hydrophilic and hydrophobic pathways for the drug- receptor reaction , 1977, The Journal of general physiology.

[154]  M. McNamee,et al.  Independent activation of the acetylcholine receptor from Torpedo californica at two sites. , 1980, Biochemistry.

[155]  D. Caron,et al.  Outer membrane permeability in Pseudomonas aeruginosa: comparison of a wild-type with an antibiotic-supersusceptible mutant , 1982, Antimicrobial Agents and Chemotherapy.

[156]  B. Bean Nitrendipine block of cardiac calcium channels: high-affinity binding to the inactivated state. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[157]  J. Jenkins,et al.  X-ray diffraction analysis of matrix porin, an integral membrane protein from Escherichia coli outer membranes. , 1983, Journal of molecular biology.

[158]  R. Benz,et al.  Formation of large, ion-permeable membrane channels by the matrix protein (porin) of Escherichia coli. , 1978, Biochimica et biophysica acta.

[159]  M. McNamee,et al.  Activation and inactivation kinetics of Torpedo californica acetylcholine receptor in reconstituted membranes. , 1982, Biochemistry.

[160]  P A Pappone,et al.  Voltage‐clamp experiments in normal and denervated mammalian skeletal muscle fibres. , 1980, The Journal of physiology.

[161]  E. Taylor,et al.  Transient state phosphate production in the hydrolysis of nucleoside triphosphates by myosin. , 1970, Biochemistry.

[162]  R. Benz,et al.  Outer-membrane protein PhoE from Escherichia coli forms anion-selective pores in lipid-bilayer membranes. , 1984, European journal of biochemistry.

[163]  R. Muller,et al.  Monazomycin-induced single channels. I. Characterization of the elementary conductance events , 1982, The Journal of general physiology.

[164]  P. Usherwood,et al.  Non-random openings and concentration-dependent lifetimes of glutamate-gated channels in muscle membrane , 1981, Nature.

[165]  W. Catterall,et al.  Functional reconstitution of the purified brain sodium channel in planar lipid bilayers. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[166]  S. Hladky,et al.  Ion transport in the simplest single file pore. , 1979, Biochimica et biophysica acta.

[167]  H. Sandermann Lipid-dependent membrane enzymes. A kinetic model for cooperative activation in the absence of cooperativity in lipid binding. , 1982, European journal of biochemistry.

[168]  T. Rosenberry,et al.  Modification of electroplax excitability by veratridine. , 1973, Biochimica et biophysica acta.

[169]  R. Benz,et al.  Ionic selectivity of pores formed by the matrix protein (porin) of Escherichia coli. , 1979, Biochimica et biophysica acta.

[170]  H. Ussing The active ion transport through the isolated frog skin in the light of tracer studies. , 1949, Acta physiologica Scandinavica.

[171]  M. Lazdunski,et al.  Purification of binding protein for Tityus gamma toxin identified with the gating component of the voltage-sensitive Na+ channel. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[172]  R. Benz,et al.  Identification and characterization of the pore-forming protein in the outer membrane of rat liver mitochondria. , 1982, Biochimica et biophysica acta.

[173]  S. Snyder,et al.  A unitary mechanism of calcium antagonist drug action. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[174]  J. M. Ritchie,et al.  Evidence that tetrodotoxin and saxitoxin act at a metal cation binding site in the sodium channels of nerve membrane. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[175]  R. Fink,et al.  An evaluation of the membrane constants and the potassium conductance in metabolically exhausted muscle fibres. , 1976, The Journal of physiology.

[176]  F. Sigworth Electronic Design of the Patch Clamp , 1983 .

[177]  C Huang,et al.  Studies on phosphatidylcholine vesicles. Formation and physical characteristics. , 1969, Biochemistry.

[178]  P. Gellerfors,et al.  Purification of a protein having pore forming activity from the rat liver mitochondrial outer membrane. , 1982, The Biochemical journal.

[179]  S. Sherman,et al.  Tetrodotoxin-sensitive sodium channels in rat muscle cells developing in vitro. , 1983, The Journal of biological chemistry.

[180]  J. Zimmerberg,et al.  Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. II. Incorporation of a vesicular membrane marker into the planar membrane , 1980, The Journal of general physiology.

[181]  W. Catterall,et al.  The saxitoxin receptor of the sodium channel from rat brain. Evidence for two nonidentical beta subunits. , 1982, The Journal of biological chemistry.

[182]  J. P. Valleau,et al.  Electrical double layers. I. Monte Carlo study of a uniformly charged surface , 1980 .

[183]  T. Nakae,et al.  Identification of the outer membrane protein of E. coli that produces transmembrane channels in reconstituted vesicle membranes. , 1976, Biochemical and biophysical research communications.

[184]  P. Mueller MEMBRANE EXCITATION THROUGH VOLTAGE‐INDUCED AGGREGATION OF CHANNEL PRECURSORS fn1 , 1975, Annals of the New York Academy of Sciences.

[185]  R. Huganir,et al.  Properties of proteoliposomes reconstituted with acetylcholine receptor from Torpedo californica. , 1982, The Journal of biological chemistry.

[186]  E. R. Kandel,et al.  Cyclic AMP-dependent protein kinase closes the serotonin-sensitive K+channels of Aplysia sensory neurones in cell-free membrane patches , 1985, Nature.

[187]  M. Blaustein,et al.  Membrane potentials in pinched‐off presynaptic nerve ternimals monitored with a fluorescent probe: evidence that synaptosomes have potassium diffusion potentials. , 1975, The Journal of physiology.

[188]  G. Strichartz,et al.  The Inhibition of Sodium Currents in Myelinated Nerve by Quaternary Derivatives of Lidocaine , 1973, The Journal of general physiology.

[189]  W. Catterall,et al.  Sodium channels in planar lipid bilayers. Channel gating kinetics of purified sodium channels modified by batrachotoxin , 1986, The Journal of general physiology.

[190]  J. Frank,et al.  Structural and functional evidence for multiple channel complexes in the outer membrane of Neurospora crassa mitochondria. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[191]  R. Meech,et al.  Calcium-dependent potassium activation in nervous tissues. , 1978, Annual review of biophysics and bioengineering.

[192]  H. Nikaido,et al.  Diffusion of solutes through channels produced by phage lambda receptor protein of Escherichia coli: inhibition by higher oligosaccharides of maltose series. , 1980, Biochemical and biophysical research communications.

[193]  S. Blanchard,et al.  Ligand-induced conformation changes in Torpedo californica membrane-bound acetylcholine receptor. , 1978, Biochemistry.

[194]  C. Miller,et al.  Ionic selectivity, saturation, and block in a K+-selective channel from sarcoplasmic reticulum , 1980, The Journal of general physiology.

[195]  J. M. Ritchie,et al.  The Action of Local Anesthetics on Ion Channels of Excitable Tissues , 1987 .

[196]  R. Latorre,et al.  Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle , 1985, Nature.

[197]  J. González-Ros,et al.  Reconstitution of functional membrane-bound acetylcholine receptor from isolated Torpedo californica receptor protein and electroplax lipids. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[198]  G. Ramseyer,et al.  Vidicon flame emission spectroscopy of Li+, Na+, and K+ fluxes mediated by acetylcholine receptor in Electrophorus electricus membrane vesicles. , 1981, Analytical biochemistry.

[199]  W. Catterall Activation of the action potential Na+ ionophore by neurotoxins. An allosteric model. , 1977, The Journal of biological chemistry.

[200]  B. Lugtenberg,et al.  Influence of osmolarity of the growth medium on the outer membrane protein pattern of Escherichia coli , 1977, Journal of bacteriology.

[201]  J. Wong Kinetics of enzyme mechanisms , 1975 .

[202]  M. McNamee,et al.  Effects of thio-group modifications on the ion permeability control and ligand binding properties of Torpedo californica acetylcholine receptor. , 1981, Biochemistry.

[203]  M. McNamee,et al.  Inhibition of ion permeability control properties of acetylcholine receptor from Torpedo californica by long-chain fatty acids. , 1980, Biochemistry.

[204]  C. Hidalgo,et al.  Immunological and biochemical properties of transverse tubule membranes isolated from rabbit skeletal muscle. , 1981, The Journal of biological chemistry.

[205]  B. Hille The receptor for tetrodotoxin and saxitoxin. A structural hypothesis. , 1975, Biophysical journal.

[206]  O. H. Griffith,et al.  Phosphatidylcholine exchange between the boundary lipid and bilayer domains in cytochrome oxidase containing membranes. , 1977, Biochemistry.

[207]  J. González-Ros,et al.  Ligand-induced effects at regions of acetylcholine receptor accessible to membrane lipids. , 1983, Biochemistry.

[208]  W. Bartley,et al.  The study of steady-state concentrations of internal solutes of mitochondria by rapid centrifugal transfer to a fixation medium. , 1957, The Biochemical journal.

[209]  S. Levinson,et al.  A rapid and precise assay for tetrodotoxin binding to detergent extracts of excitable tissues. , 1979, Analytical biochemistry.

[210]  A. Hodgkin,et al.  The action of calcium on the electrical properties of squid axons , 1957, The Journal of physiology.

[211]  T. Nakae Outer membrane of Salmonella typhimurium: reconstitution of sucrose-permeable membrane vesicles. , 1975, Biochemical and biophysical research communications.

[212]  W. Almers,et al.  Interactions between quaternary lidocaine, the sodium channel gates, and tetrodotoxin. , 1979, Biophysical journal.

[213]  R. Hancock,et al.  Identification of the protein producing transmembrane diffusion pores in the outer membrane of Pseudomonas aeruginosa PA01. , 1979, Biochimica et biophysica acta.

[214]  R. Horn,et al.  Inactivation viewed through single sodium channels , 1984, The Journal of general physiology.

[215]  H. Lux,et al.  A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones , 1984, Nature.

[216]  S. Hall Toxins and toxicity of Protogonyaulax from the Northeast Pacific , 1982 .

[217]  Alain Marty,et al.  Tight-Seal Whole-Cell Recording , 1983 .

[218]  T. Nakae,et al.  Permeability properties of chemically modified porin trimers from Escherichia coli B. , 1981, The Journal of biological chemistry.

[219]  R. Benz Structure and Selectivity of Porin Channels , 1984 .

[220]  R. Kelly,et al.  Lipids of synaptic vesicles: relevance to the mechanism of membrane fusion. , 1981, Biochemistry.

[221]  H. Garty,et al.  A simple and sensitive procedure for measuring isotope fluxes through ion-specific channels in heterogenous populations of membrane vesicles. , 1983, The Journal of biological chemistry.

[222]  G. Eisenman,et al.  Multi-site, multi-barrier, multi-occupancy models for the electrical behavior of single filing channels like those of gramicidin , 1979, Brain Research Bulletin.

[223]  T. Nakae,et al.  Subunit structure of functional porin oligomers that form permeability channels in the other membrane of Escherichia coli. , 1979, The Journal of biological chemistry.

[224]  E. Albuquerque,et al.  Conductance of Squid Giant Axons , 1971 .

[225]  E. Racker,et al.  Reconstitution of carbamylcholine-dependent sodium ion flux and desensitization of the acetylcholine receptor from Torpedo californica. , 1978, The Journal of biological chemistry.

[226]  C. Tanford,et al.  Gel-exclusion chromatography on S1000 Sephacryl: application to phospholipid vesicles. , 1983, Analytical biochemistry.

[227]  J. Tanaka,et al.  Purification and functional reconstitution of the voltage-sensitive sodium channel from rabbit T-tubular membranes. , 1985, The Journal of biological chemistry.

[228]  M. Lazdunski,et al.  Reconstitution of highly purified saxitoxin‐sensitive Na+‐channels into planar lipid bilayers. , 1984, The EMBO journal.

[229]  D. Brdiczka,et al.  The binding of glycerol kinase to the outer membrane of rat liver mitochondria: its importance in metabolic regulation. , 1983, Biochemical medicine.

[230]  H. Schindler,et al.  Formation of lipid—protein bilayers by micropipette guided contact of two monolayers , 1983 .

[231]  J. Harris,et al.  Studies on tetrodotoxin resistant action potentials in denervated skeletal muscle. , 1971, Acta physiologica Scandinavica.

[232]  E. Kandel,et al.  Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurones , 1982, Nature.

[233]  R. Benz,et al.  Pore formation by an outer membrane protein of the cyanobacterium Anabaena variabilis , 1985 .

[234]  G. Ehrenstein,et al.  Batrachotoxin modifies the gating kinetics of sodium channels in internally perfused neuroblastoma cells. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[235]  B. Hille Ionic channels of excitable membranes , 2001 .

[236]  K L Magleby,et al.  Properties of single calcium‐activated potassium channels in cultured rat muscle , 1982, The Journal of physiology.

[237]  M. Lazdunski,et al.  Electrophysiological characterization, solubilization and purification of the Tityus gamma toxin receptor associated with the gating component of the Na+ channel from rat brain. , 1983, The EMBO journal.

[238]  B. Khodorov,et al.  Further analysis of the mechanisms of action of batrachotoxin on the membrane of myelinated nerve , 1979, Neuroscience.

[239]  W. Catterall,et al.  Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubules. , 1984, Biochemistry.

[240]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[241]  T. Nakae,et al.  The outer membrane of Gram-negative bacteria. , 1979, Advances in microbial physiology.

[242]  F. Bezanilla,et al.  Sodium channel activation in the squid giant axon. Steady state properties , 1985, The Journal of general physiology.

[243]  M. Raftery,et al.  A simple assay for the study of solubilized acetylcholine receptors. , 1973, Analytical biochemistry.

[244]  T. Nakae,et al.  Characterization of porins from the outer membrane of Salmonella typhimurium. 2. Physical properties of the functional oligomeric aggregates. , 1979, European journal of biochemistry.

[245]  K L Magleby,et al.  Calcium dependence of open and shut interval distributions from calcium‐activated potassium channels in cultured rat muscle. , 1983, The Journal of physiology.

[246]  P. Greengard,et al.  Microinjection of catalytic subunit of cyclic AMP-dependent protein kinase enhances calcium action potentials of bag cell neurons in cell culture. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[247]  L. B. Weiss,et al.  Batrachotoxin‐Modified Sodium Channels in Lipid Bilayers a , 1984 .

[248]  C. Armstrong,et al.  Ionic pores, gates, and gating currents , 1974, Quarterly Reviews of Biophysics.

[249]  F. Szoka,et al.  Comparative properties and methods of preparation of lipid vesicles (liposomes). , 1980, Annual review of biophysics and bioengineering.

[250]  C. Y. Kao,et al.  Active groups of saxitoxin and tetrodotoxin as deduced from actions of saxitoxin analogues on frog muscle and squid axon. , 1982, The Journal of physiology.

[251]  J. Sandblom,et al.  Single-salt behavior of a symmetrical 4-site channel with barriers at its middle and ends , 1984 .

[252]  R. Barchi Voltage-sensitive Na + ion channels: molecular properties and functional reconstitution , 1984 .

[253]  M. McNamee,et al.  Comparison of acetylcholine receptor-controlled cation flux in membrane vesicles from Torpedo californica and Electrophorus electricus: chemical kinetic measurements in the millisecond region. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[254]  W. Catterall,et al.  Comparison of ionic selectivity of batrachotoxin-activated channels with different tetrodotoxin dissociation constants , 1979, The Journal of general physiology.

[255]  J. M. Ritchie,et al.  The effect of surface charge on the nerve membrane on the action of tetrodotoxin and saxitoxin in frog myelinated nerve. , 1975, The Journal of physiology.

[256]  M. Raftery,et al.  Binding of perhydrohistrionicotoxin to intact and detergent-solubilized membranes enriched in nicotinic acetylcholine receptor. , 1979, Biochemistry.

[257]  C. Stevens,et al.  The effect of tetramethylammonium on single sodium channel currents. , 1981, Biophysical journal.

[258]  G. P. Hess,et al.  Acetylcholine receptor-controlled ion translocation: chemical kinetic investigations of the mechanism. , 1983, Annual review of biophysics and bioengineering.

[259]  G. Gardos,et al.  The function of calcium in the potassium permeability of human erythrocytes. , 1958, Biochimica et biophysica acta.

[260]  J. Moore,et al.  Tetrodotoxin Does Not Block Excitation from Inside the Nerve Membrane , 1966, Science.

[261]  K. Nakamura,et al.  Effects of heating in dodecyl sulfate solution on the conformation and electrophoretic mobility of isolated major outer membrane proteins from Escherichia coli K-12. , 1976, Journal of biochemistry.

[262]  A. Hawkes,et al.  On the stochastic properties of single ion channels , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[263]  J. Changeux,et al.  Rapid kinetics of agonist binding and permeability response analyzed in parallel on acetylcholine receptor rich membranes from Torpedo marmorata. , 1983, Biochemistry.

[264]  Efraim Racker,et al.  Partial Resolution of the Enzymes Catalyzing Oxidative Phosphorylation XXV. RECONSTITUTION OF VESICLES CATALYZING 32Pi—ADENOSINE TRIPHOSPHATE EXCHANGE , 1971 .

[265]  K. Nakanishi,et al.  Structure of neosaxitoxin , 1978 .

[266]  H. Reuter Calcium channel modulation by neurotransmitters, enzymes and drugs , 1983, Nature.

[267]  R. Muller,et al.  Inactivation of monazomycin-induced voltage-dependent conductance in thin lipid membranes. I. Inactivation produced by long chain quaternary ammonium ions , 1976, The Journal of general physiology.

[268]  M. McNamee,et al.  Multiple binding sites for local anesthetics on reconstituted acetylcholine receptor membranes. , 1984, Biochemical and biophysical research communications.

[269]  A Karlin,et al.  Nicotinic acetylcholine receptors. , 1977 .

[270]  J. Changeux,et al.  Time-resolved photolabeling by the noncompetitive blocker chlorpromazine of the acetylcholine receptor in its transiently open and closed ion channel conformations. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[271]  W. Ulbricht The effect of veratridine on excitable membranes of nerve and muscle. , 1969, Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie.

[272]  U. K. Laemmli,et al.  Cleavage of structural proteins during , 1970 .

[273]  P. Cohen,et al.  The role of protein phosphorylation in neural and hormonal control of cellular activity , 1982, Nature.

[274]  R. Coronado Recent advances in planar phospholipid bilayer techniques for monitoring ion channels. , 1986, Annual review of biophysics and biophysical chemistry.

[275]  D. Tosteson,et al.  The Effect of Valinomycin on the Ionic Permeability of Thin Lipid Membranes , 1967, The Journal of general physiology.

[276]  D. O. Rudin,et al.  Development of K+-Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics. , 1967, Biochemical and biophysical research communications.

[277]  A. Hodgkin,et al.  The potassium permeability of a giant nerve fibre , 1955, The Journal of physiology.

[278]  B. Hille,et al.  Negative surface charge near sodium channels of nerve: divalent ions, monovalent ions, and pH. , 1975, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[279]  W. Almers,et al.  Calcium depletion in frog muscle tubules: the decline of calcium current under maintained depolarization. , 1981, The Journal of physiology.

[280]  A. Hermann,et al.  Ca2+ activated K+ conductance in molluscan neurones. , 1983, Cell calcium.

[281]  G. P. Hess,et al.  Quenched flow technique with plasma membrane vesicles: acetylcholine receptor-mediated transmembrane ion flux. , 1981, Analytical biochemistry.

[282]  J. González-Ros,et al.  Characterization of acetylcholine receptor isolated from Torpedo californica electroplax through the use of an easily removable detergent, beta-D-octylglucopyranoside. , 1981, Biochimica et biophysica acta.

[283]  Fred J. Sigworth,et al.  Fitting and Statistical Analysis of Single-Channel Records , 1983 .

[284]  W. Agnew,et al.  Reconstitution of neurotoxin-modulated ion transport by the voltage-regulated sodium channel isolated from the electroplax of Electrophorus electricus. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[285]  R. Tsien,et al.  Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells , 1983, Nature.

[286]  K. Campbell,et al.  Direct photoaffinity labeling of the high affinity nitrendipine-binding site in subcellular membrane fractions isolated from canine myocardium. , 1984, The Journal of biological chemistry.

[287]  A. Lee,et al.  Lipid selectivity of the calcium and magnesium ion dependent adenosinetriphosphatase, studied with fluorescence quenching by a brominated phospholipid. , 1982, Biochemistry.

[288]  J B Patlak,et al.  Slow currents through single sodium channels of the adult rat heart , 1985, The Journal of general physiology.

[289]  S. Levinson,et al.  Purification of the tetrodotoxin-binding component associated with the voltage-sensitive sodium channel from Electrophorus electricus electroplax membranes. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[290]  Christopher Miller,et al.  Decamethonium and hexamethonium block K+ channels of sarcoplasmic reticulum , 1980, Nature.

[291]  P. Taylor,et al.  The Linkage between Ligand Occupation and Response of the Nicotinic Acetylcholine Receptor , 1983 .

[292]  M. W. Hill,et al.  Preparation and Use of Liposomes as Models of Biological Membranes , 1974 .

[293]  A. Brown,et al.  Patch and whole cell calcium currents recorded simultaneously in snail neurons , 1984, The Journal of general physiology.

[294]  K. Magleby,et al.  Single channel recordings of Ca2+-activated K+ currents in rat muscle cell culture , 1981, Nature.

[295]  J. Tanaka,et al.  Molecular characteristics and functional reconstitution of muscle voltage‐sensitive sodium channels , 1984, Journal of cellular biochemistry.

[296]  R M Stroud,et al.  Amphipathic analysis and possible formation of the ion channel in an acetylcholine receptor. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[297]  R. Benz,et al.  Properties of chemically modified porin from Escherichia coli in lipid bilayer membranes. , 1984, Biochimica et biophysica acta.

[298]  E. Racker,et al.  Incorporation of the sodium channel of lobster nerve into artificial liposomes. , 1977, Biochemical and biophysical research communications.

[299]  E. Bamberg,et al.  Effects of surface charge on the conductance of the gramicidin channel. , 1979, Biochimica et biophysica acta.

[300]  A. Karlin Permeability and internal concentration of ions during depolarization of the electroplax. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[301]  Peter Hess,et al.  Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists , 1984, Nature.

[302]  J. Barrett,et al.  Calcium-dependent slow potassium conductance in rat skeletal myotubes. , 1981, Developmental biology.

[303]  T. M. Balasubramanian,et al.  Alamethicin. A rich model for channel behavior. , 1984, Biophysical journal.

[304]  W. Almers,et al.  Non‐selective conductance in calcium channels of frog muscle: calcium selectivity in a single‐file pore. , 1984, The Journal of physiology.

[305]  B. Hille,et al.  Potassium channels as multi-ion single-file pores , 1978, The Journal of general physiology.

[306]  A. Brown,et al.  The agonist effect of dihydropyridines on Ca channels , 1984, Nature.

[307]  M. Lazdunski,et al.  Characterization, solubilization, affinity labeling and purification of the cardiac Na+ channel using Tityus toxin gamma. , 1984, European journal of biochemistry.

[308]  B. Lugtenberg,et al.  Outer membranes of gram-negative bacteria. , 1987, Biochemical Society transactions.

[309]  D. Landowne,et al.  A comparison of radioactive thallium and potassium fluxes in the giant axon of the squid. , 1975, The Journal of physiology.

[310]  R. H. Adrian,et al.  Voltage clamp experiments in striated muscle fibres , 1970, The Journal of physiology.

[311]  W. Catterall,et al.  Covalent labeling of protein components of the sodium channel with a photoactivable derivative of scorpion toxin. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[312]  C. Chignell,et al.  Kinetics of agonist-mediated transitions in state of the cholinergic receptor. , 1977, The Journal of biological chemistry.

[313]  R. Barchi,et al.  Purification from rat sarcolemma of the saxitoxin-binding component of the excitable membrane sodium channel. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[314]  E. Neher,et al.  Inward current channels activated by intracellular Ca in cultured cardiac cells , 1981, Nature.

[315]  D. O. Rudin,et al.  Translocators in Bimolecular Lipid Membranes: Their Role in Dissipative and Conservative Bioenergy Transductions , 1969 .

[316]  C. Stevens,et al.  Sodium channels need not open before they inactivate , 1981, Nature.

[317]  M. Colombini STRUCTURE AND MODE OF ACTION OF A VOLTAGE DEPENDENT ANION‐SELECTIVE CHANNEL (VDAC) LOCATED IN THE OUTER MITOCHONDRIAL MEMBRANE DEPENDENT ANION‐SELECTIVE CHANNEL (VDAC) * , 1980, Annals of the New York Academy of Sciences.

[318]  F. Barrantes,et al.  Immobilized lipid in acetylcholine receptor-rich membranes from Torpedo marmorata. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[319]  J. Walsh,et al.  Ca++-activated K+ channels in vertebrate smooth muscle cells. , 1983, Cell calcium.

[320]  R. Anholt,et al.  Stabilization of acetylcholine receptor channels by lipids in cholate solution and during reconstitution in vesicles. , 1981, The Journal of biological chemistry.

[321]  Christopher Miller,et al.  Reconstitution of Membrane Transport Functions , 1979 .

[322]  E. Neher,et al.  Local anaesthetics transiently block currents through single acetylcholine‐receptor channels. , 1978, The Journal of physiology.

[323]  E. Delpont,et al.  [3H]nitrendipine receptors in skeletal muscle. , 1983, The Journal of biological chemistry.

[324]  K. Magleby,et al.  Ion conductance and selectivity of single calcium-activated potassium channels in cultured rat muscle , 1984, The Journal of general physiology.

[325]  F. Hucho,et al.  Membranes rich in acetylcholine receptor: characterization and reconstitution to excitable membranes from exogenous lipids. , 1978, European journal of biochemistry.

[326]  R. Tsien,et al.  Long-opening mode of gating of neuronal calcium channels and its promotion by the dihydropyridine calcium agonist Bay K 8644. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[327]  E. Neher,et al.  Single Na+ channel currents observed in cultured rat muscle cells , 1980, Nature.

[328]  N. Matsuki,et al.  Two types of voltage dependent na channels suggested by differential sensitivity of single channels to tetrodotoxin. , 1984, Biophysical journal.

[329]  B. Katz,et al.  A study of the ‘desensitization’ produced by acetylcholine at the motor end‐plate , 1957, The Journal of physiology.

[330]  S. Roseman,et al.  Periplasmic space in Salmonella typhimurium and Escherichia coli. , 1977, The Journal of biological chemistry.

[331]  W. Chandler,et al.  Voltage clamp experiments on internally perfused giant axons. , 1965, The Journal of physiology.

[332]  E. Gallin Calcium- and voltage-activated potassium channels in human macrophages. , 1984, Biophysical journal.

[333]  J. Yeh,et al.  Kinetics of 9-aminoacridine block of single Na channels , 1984, The Journal of general physiology.

[334]  J. Tommassen,et al.  Outer membrane protein e of Escherichia coli K-12 is co-regulated with alkaline phosphatase , 1980, Journal of bacteriology.

[335]  F. Hofmann,et al.  Calcium channels: direct identification with radioligand binding studies , 1982 .

[336]  H Lecar,et al.  Single calcium-dependent potassium channels in clonal anterior pituitary cells. , 1982, Biophysical journal.

[337]  K. Magleby,et al.  Single voltage-dependent chloride-selective channels of large conductance in cultured rat muscle. , 1983, Biophysical journal.

[338]  T. Deerinck,et al.  Incorporation of acetylcholine receptors into liposomes. Vesicle structure and acetylcholine receptor function. , 1982, The Journal of biological chemistry.

[339]  F S Cohen,et al.  Parameters affecting the fusion of unilamellar phospholipid vesicles with planar bilayer membranes , 1984, The Journal of cell biology.

[340]  Frederick Sachs,et al.  Automated Analysis of Single-Channel Records , 1983 .

[341]  Y. Kagawa,et al.  Mitochondrial outer membrane contains a protein producing nonspecific diffusion channels. , 1980, The Journal of biological chemistry.

[342]  H. Nikaido,et al.  Effect on solute size on diffusion rates through the transmembrane pores of the outer membrane of Escherichia coli , 1981, The Journal of general physiology.

[343]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[344]  C. Y. Kao,et al.  Actions of saxitoxin on peripheral neuromuscular systems. , 1965, The Journal of physiology.

[345]  M. McNamee,et al.  Reconstitution of acetylcholine receptor function in lipid vesicles of defined composition. , 1983, Biochimica et biophysica acta.

[346]  A. Woodhull,et al.  Ionic Blockage of Sodium Channels in Nerve , 1973, The Journal of general physiology.

[347]  M. McNamee,et al.  Lipid-protein interactions in reconstituted membranes containing acetylcholine receptor. , 1983, Biochemistry.

[348]  G. Giebisch,et al.  Single channel recordings of calcium-activated potassium channels in the apical membrane of rabbit cortical collecting tubules. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[349]  B. Hille The Permeability of the Sodium Channel to Metal Cations in Myelinated Nerve , 1972, The Journal of general physiology.

[350]  R. Barchi Protein Components of the Purified Sodium Channel from Rat Skeletal Muscle Sarcolemma , 1983, Journal of neurochemistry.

[351]  J. González-Ros,et al.  Lipid environment of acetylcholine receptor from Torpedo californica. , 1982, Biochemistry.

[352]  H. Gutfreund [7] Rapid mixing: Continuous flow , 1969 .

[353]  V. Skulachev,et al.  Direct measurement of electric current generation by cytochrome oxidase, H+-ATPase and bacteriorhodopsin. , 1974, Nature.

[354]  J. Weigele,et al.  Muscle surface membranes: preparative methods affect apparent chemical properties and neurotoxin binding. , 1979, Biochimica et biophysica acta.

[355]  J. Changeux,et al.  Lipid-dependent recovery of alpha-bungarotoxin and monoclonal antibody binding to the purified alpha-subunit from Torpedo marmorata acetylcholine receptor. Enhancement by noncompetitive channel blockers. , 1984, The Journal of biological chemistry.

[356]  J. Silvius,et al.  Lipid--protein multiple binding equilibria in membranes. , 1981, Biochemistry.

[357]  R R Neubig,et al.  Permeability control by cholinergic receptors in Torpedo postsynaptic membranes: agonist dose-response relations measured at second and millisecond times. , 1980, Biochemistry.

[358]  C. Tanford,et al.  Phospholipid vesicle formation using nonionic detergents with low monomer solubility. Kinetic factors determine vesicle size and permeability. , 1984, Biochemistry.

[359]  P. Läuger Diffusion-limited ion flow through pores. , 1976, Biochimica et biophysica acta.

[360]  W. Catterall,et al.  Solubilization of the calcium antagonist receptor from rat brain. , 1983, The Journal of biological chemistry.

[361]  M. Raftery,et al.  Reconstitution of acetylcholine receptor function using purified receptor protein. , 1981, Biochemistry.

[362]  J. Eccleston,et al.  Cation selectivity characteristics of the reconstituted voltage-dependent sodium channel purified from rat skeletal muscle sarcolemma. , 1983, The Journal of biological chemistry.

[363]  T. Begenisich,et al.  Sodium channel selectivity. Dependence on internal permeant ion concentration , 1976, The Journal of general physiology.

[364]  M. Lazdunski,et al.  The specificity of the sodium channel for monovalent cations. , 1981, European journal of biochemistry.

[365]  E. Rooney,et al.  Annular and non-annular binding sites on the (Ca2+ + Mg2+)-ATPase. , 1982, Biochimica et biophysica acta.

[366]  R. Tsien Calcium channels in excitable cell membranes. , 1983, Annual review of physiology.

[367]  H. Nikaido,et al.  Specificity of diffusion channels produced by X phage receptor protein of Escherichia coli (liposomes/reconstitution/outer membrane/facilitated diffusion/maltose) , 1980 .

[368]  P. Devaux ESR and NMR Studies of Lipid-Protein Interactions in Membranes , 1983 .

[369]  H. Nikaido Proteins forming large channels from bacterial and mitochondrial outer membranes: porins and phage lambda receptor protein. , 1983, Methods in enzymology.

[370]  M. Lazdunski,et al.  Solubilization of the nitrendipine receptor from skeletal muscle transverse tubule membranes. Interactions with specific inhibitors of the voltage-dependent Ca2+ channel. , 1984, European journal of biochemistry.

[371]  O. Petersen,et al.  Calcium-activated potassium channels and their role in secretion , 1984, Nature.

[372]  C. Schauf,et al.  Temperature dependence of the ionic current kinetics of Myxicola giant axons , 1973, The Journal of physiology.

[373]  R. Coronado,et al.  Agonists Bay-K8644 and CGP-28392 open calcium channels reconstituted from skeletal muscle transverse tubules. , 1985, Biophysical journal.

[374]  R. Benz,et al.  Properties of the large ion-permeable pores formed from protein F of Pseudomonas aeruginosa in lipid bilayer membranes. , 1981, Biochimica et biophysica acta.

[375]  H. Aoshima A second, slower inactivation process in acetylcholine receptor-rich membrane vesicles prepared from Electrophorus electricus. , 1984, Archives of biochemistry and biophysics.

[376]  M. Inouye,et al.  A comparative study on the genes for three porins of the Escherichia coli outer membrane. DNA sequence of the osmoregulated ompC gene. , 1983, The Journal of biological chemistry.

[377]  H. Nikaido,et al.  The Outer Membrane of Gram-negative Bacteria , 1980 .

[378]  M. Raftery,et al.  Direct spectroscopic studies of cation translocation by Torpedo acetylcholine receptor on a time scale of physiological relevance. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[379]  C. Miller,et al.  A voltage-gated anion channel from the electric organ of Torpedo californica. , 1979, The Journal of biological chemistry.

[380]  J. Weigele,et al.  Functional reconstitution of the purified sodium channel protein from rat sarcolemma. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[381]  R. G. Crounse,et al.  Fluorescence Assay in Biology and Medicine , 1963 .

[382]  P. Reichardt,et al.  Toxins extracted from an Alaskan isolate of Protogonyaulax sp. , 1980, Biochemical and biophysical research communications.

[383]  V. Parsegian,et al.  Effects of monovalent ion binding and screening on measured electrostatic forces between charged phospholipid bilayers. , 1982, Biophysical journal.

[384]  D. Nebert,et al.  Sulfobetaine derivatives of bile acids: nondenaturing surfactants for membrane biochemistry. , 1983, Analytical biochemistry.

[385]  F. Bezanilla,et al.  Negative Conductance Caused by Entry of Sodium and Cesium Ions into the Potassium Channels of Squid Axons , 1972, The Journal of general physiology.

[386]  G. Ehrenstein,et al.  Gating kinetics of batrachotoxin-modified sodium channels in neuroblastoma cells determined from single-channel measurements. , 1984, Biophysical journal.

[387]  R. Rosenberg,et al.  A voltage-gated cation conductance channel from fragmented sarcoplasmic reticulum. Effects of transition metal ions. , 1979, Biochemistry.

[388]  G. Strichartz,et al.  Molecular Mechanisms of Nerve Block by Local Anesthetics , 1976, Anesthesiology.

[389]  S. McLaughlin,et al.  Adsorption of monovalent cations to bilayer membranes containing negative phospholipids. , 1979, Biochemistry.

[390]  C. F. Stevens,et al.  A reinterpretation of mammalian sodium channel gating based on single channel recording , 1983, Nature.

[391]  W Schwarz,et al.  Ca2+-activated K+ channels in erythrocytes and excitable cells. , 1983, Annual review of physiology.

[392]  R. Gordon,et al.  Monoclonal antibodies against the voltage-sensitive Na+ channel from mammalian skeletal muscle. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[393]  A. Finkelstein,et al.  Diphtheria toxin fragment forms large pores in phospholipid bilayer membranes. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[394]  R. Latorre,et al.  Properties of a Ca2+-activated K+ channel in a reconstituted system. , 1983, Cell calcium.

[395]  C. Miller,et al.  Batrachotoxin-activated Na+ channels in planar lipid bilayers. Competition of tetrodotoxin block by Na+ , 1984, The Journal of general physiology.

[396]  M. Lazdunski,et al.  The coexistence in rat muscle cells of two distinct classes of Ca2+-dependent K+ channels with different pharmacological properties and different physiological functions. , 1984, Biochemical and biophysical research communications.

[397]  E. Stefani,et al.  Inward calcium current in twitch muscle fibres of the frog. , 1978, The Journal of physiology.

[398]  C. Miller Integral membrane channels: studies in model membranes. , 1983, Physiological reviews.

[399]  M. Raftery,et al.  Quantitation of cation transport by reconstituted membrane vesicles containing purified acetylcholine receptor. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[400]  R. Benz,et al.  Purification and characterisation of a pore protein of the outer mitochondrial membrane from Neurospora crassa. , 1982, European journal of biochemistry.

[401]  H. Nikaido,et al.  Porin channels in Escherichia coli: studies with liposomes reconstituted from purified proteins , 1983, Journal of bacteriology.